Centre for Bioengineering, Department of Engineering, University of Leicester Leicester, East Midlands, UK.
Front Neurosci. 2013 Jul 12;7:119. doi: 10.3389/fnins.2013.00119. eCollection 2013.
We present a biologically-constrained neuromorphic spiking model of the insect antennal lobe macroglomerular complex that encodes concentration ratios of chemical components existing within a blend, implemented using a set of programmable logic neuronal modeling cores. Depending upon the level of inhibition and symmetry in its inhibitory connections, the model exhibits two dynamical regimes: fixed point attractor (winner-takes-all type), and limit cycle attractor (winnerless competition type) dynamics. We show that, when driven by chemosensor input in real-time, the dynamical trajectories of the model's projection neuron population activity accurately encode the concentration ratios of binary odor mixtures in both dynamical regimes. By deploying spike timing-dependent plasticity in a subset of the synapses in the model, we demonstrate that a Hebbian-like associative learning rule is able to organize weights into a stable configuration after exposure to a randomized training set comprising a variety of input ratios. Examining the resulting local interneuron weights in the model shows that each inhibitory neuron competes to represent possible ratios across the population, forming a ratiometric representation via mutual inhibition. After training the resulting dynamical trajectories of the projection neuron population activity show amplification and better separation in their response to inputs of different ratios. Finally, we demonstrate that by using limit cycle attractor dynamics, it is possible to recover and classify blend ratio information from the early transient phases of chemosensor responses in real-time more rapidly and accurately compared to a nearest-neighbor classifier applied to the normalized chemosensor data. Our results demonstrate the potential of biologically-constrained neuromorphic spiking models in achieving rapid and efficient classification of early phase chemosensor array transients with execution times well beyond biological timescales.
我们提出了一个受生物约束的昆虫触角叶大神经节复合体的神经拟态尖峰模型,该模型用于编码混合物中存在的化学成分的浓度比,使用一组可编程逻辑神经元建模核心来实现。根据其抑制性连接的抑制水平和对称性,该模型表现出两种动力学状态:固定点吸引子(胜者全取型)和极限环吸引子(无胜者竞争型)动力学。我们表明,当模型的投影神经元群体活动的化学传感器输入实时驱动时,模型的动力学轨迹准确地编码了二元气味混合物的浓度比,这两种动力学状态都适用。通过在模型中的一组突触中部署尖峰时间依赖可塑性,我们证明了一种赫布式的联想学习规则能够在接触由各种输入比组成的随机训练集后,将权重组织成稳定的配置。检查模型中产生的局部中间神经元权重表明,每个抑制神经元通过相互抑制在群体中竞争代表可能的比率,从而形成比率表示。在训练之后,投影神经元群体活动的动力学轨迹表现出对不同比率输入的响应的放大和更好的分离。最后,我们证明,通过使用极限环吸引子动力学,可以比应用于归一化化学传感器数据的最近邻分类器更快和更准确地从化学传感器响应的早期瞬态中恢复和分类混合比信息。我们的结果表明,受生物约束的神经拟态尖峰模型在实现早期化学传感器阵列瞬态的快速和高效分类方面具有潜力,执行时间远远超过生物学时间尺度。