Suppr超能文献

一种可重构的在线学习脉冲神经形态处理器,包含256个神经元和128K个突触。

A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.

作者信息

Qiao Ning, Mostafa Hesham, Corradi Federico, Osswald Marc, Stefanini Fabio, Sumislawska Dora, Indiveri Giacomo

机构信息

Institute of Neuroinformatics, University of Zurich and ETH Zurich Zurich, Switzerland.

出版信息

Front Neurosci. 2015 Apr 29;9:141. doi: 10.3389/fnins.2015.00141. eCollection 2015.

Abstract

Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm(2), and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.

摘要

实现具有实时在线学习能力的紧凑、低功耗人工神经处理系统仍然是一个悬而未决的挑战。在本文中,我们展示了一种具有神经形态学习电路的全定制混合信号超大规模集成电路器件,该电路模拟了真实脉冲神经元和动态突触的生物物理学,用于探索计算神经科学模型的特性以及构建受大脑启发的计算系统。所提出的架构允许在芯片上配置广泛的网络连接,包括具有短期和长期可塑性的递归网络和深度网络。该器件包括128K个模拟突触和256个神经元电路,具有生物学上合理的动态特性和基于双稳态尖峰的可塑性机制,使其具备在线学习能力。除了模拟电路外,该器件还包括异步数字逻辑电路,用于设置不同的突触和神经元特性以及不同的网络配置。这个原型器件采用180nm 1P6M CMOS工艺制造,面积为51.4平方毫米,在典型实验(例如涉及吸引子网络的实验)中消耗约4毫瓦的功率。在这里,我们描述了整体架构和各个电路的细节,并展示了其潜力的实验结果。通过支持包括可塑性机制在内的各种类皮质计算模块,该器件将实现具有在线学习能力的智能自主系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd21/4413675/bee29d9ecbc7/fnins-09-00141-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验