Suppr超能文献

基于尖峰的人工嗅觉系统神经形态方法研究。

An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems.

机构信息

School of Engineering, Edith Cowan University, 6027 Perth, Australia.

出版信息

Sensors (Basel). 2017 Nov 10;17(11):2591. doi: 10.3390/s17112591.

Abstract

The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over the last decade, research on neuromorphic olfaction has established the capability of these sensors to tackle problems that plague the current e-nose implementations such as drift, response time, portability, power consumption and size. This article brings together the key contributions in neuromorphic olfaction and identifies future research directions to develop near-real-time olfactory sensors that can be implemented for a range of applications such as biosecurity and environmental monitoring. Furthermore, we aim to expose the computational parallels between neuromorphic olfaction and gustation for future research focusing on the correlation of these senses.

摘要

神经形态方法的实现为视觉和听觉传感器带来了有前景的结果。这些方法专注于模拟神经生物学结构,以最小的功耗生成和处理基于尖峰的信息。随着人们对开发低功耗、稳健的化学传感器越来越感兴趣,神经形态工程概念在电子鼻中的应用为专注于改进这些仪器的研究提供了动力。虽然传统的电子鼻应用计算成本高且功耗大的数据处理策略,但神经形态嗅觉传感器则实施了人类和昆虫中发现的生物嗅觉原理,通过生成和处理基于尖峰的信息来简化对多变量感官数据的处理。在过去的十年中,神经形态嗅觉研究已经证明了这些传感器有能力解决当前电子鼻实现中存在的问题,如漂移、响应时间、便携性、功耗和尺寸。本文汇集了神经形态嗅觉领域的主要贡献,并确定了未来的研究方向,以开发近实时嗅觉传感器,可应用于生物安全和环境监测等一系列应用。此外,我们旨在揭示神经形态嗅觉和味觉之间的计算相似性,为未来专注于这些感觉相关性的研究提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4de/5713038/e929835acf45/sensors-17-02591-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验