Suppr超能文献

从开始到结束:渗透胁迫对细胞周期的影响。

From START to FINISH: the influence of osmotic stress on the cell cycle.

机构信息

Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom.

出版信息

PLoS One. 2013 Jul 10;8(7):e68067. doi: 10.1371/journal.pone.0068067. Print 2013.

Abstract

The cell cycle is a sequence of biochemical events that are controlled by complex but robust molecular machinery. This enables cells to achieve accurate self-reproduction under a broad range of different conditions. Environmental changes are transmitted by molecular signalling networks, which coordinate their action with the cell cycle. The cell cycle process and its responses to environmental stresses arise from intertwined nonlinear interactions among large numbers of simpler components. Yet, understanding of how these pieces fit together into a coherent whole requires a systems biology approach. Here, we present a novel mathematical model that describes the influence of osmotic stress on the entire cell cycle of S. cerevisiae for the first time. Our model incorporates all recently known and several proposed interactions between the osmotic stress response pathway and the cell cycle. This model unveils the mechanisms that emerge as a consequence of the interaction between the cell cycle and stress response networks. Furthermore, it characterises the role of individual components. Moreover, it predicts different phenotypical responses for cells depending on the phase of cells at the onset of the stress. The key predictions of the model are: (i) exposure of cells to osmotic stress during the late S and the early G2/M phase can induce DNA re-replication before cell division occurs, (ii) cells stressed at the late G2/M phase display accelerated exit from mitosis and arrest in the next cell cycle, (iii) osmotic stress delays the G1-to-S and G2-to-M transitions in a dose dependent manner, whereas it accelerates the M-to-G1 transition independently of the stress dose and (iv) the Hog MAPK network compensates the role of the MEN network during cell division of MEN mutant cells. These model predictions are supported by independent experiments in S. cerevisiae and, moreover, have recently been observed in other eukaryotes.

摘要

细胞周期是一系列受复杂但稳健的分子机制控制的生化事件。这使得细胞能够在广泛的不同条件下实现准确的自我复制。环境变化通过分子信号网络传递,这些网络协调其作用与细胞周期。细胞周期过程及其对环境压力的反应源于大量更简单成分之间相互交织的非线性相互作用。然而,理解这些部分如何组合成一个连贯的整体需要系统生物学的方法。在这里,我们提出了一个新的数学模型,该模型首次描述了渗透胁迫对酿酒酵母整个细胞周期的影响。我们的模型整合了渗透胁迫反应途径与细胞周期之间所有最近已知的和几个提议的相互作用。该模型揭示了细胞周期和应激反应网络之间相互作用产生的机制。此外,它还描述了各个组件的作用。此外,它还预测了细胞在应激开始时所处的不同相位会导致不同的表型反应。该模型的主要预测有:(i)在晚期 S 和早期 G2/M 期暴露于渗透压胁迫下,可在细胞分裂前诱导 DNA 再复制,(ii)在晚期 G2/M 期受到胁迫的细胞会加速从有丝分裂中退出并在接下来的细胞周期中停滞,(iii)渗透压胁迫以剂量依赖的方式延迟 G1 到 S 和 G2 到 M 的转变,而独立于胁迫剂量加速 M 到 G1 的转变,(iv)Hog MAPK 网络在 MEN 突变细胞的细胞分裂过程中补偿 MEN 网络的作用。这些模型预测得到了酿酒酵母中独立实验的支持,而且最近在其他真核生物中也得到了观察。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/102e/3707922/7c2f01a510fb/pone.0068067.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验