Suppr超能文献

基于连锁不平衡的疾病相关罕见变异选择方法。

A linkage disequilibrium-based approach to selecting disease-associated rare variants.

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.

出版信息

PLoS One. 2013 Jul 11;8(7):e69226. doi: 10.1371/journal.pone.0069226. Print 2013.

Abstract

Rare variants have increasingly been cited as major contributors in the disease etiology of several complex disorders. Recently, several approaches have been proposed for analyzing the association of rare variants with disease. These approaches include collapsing rare variants, summing rare variant test statistics within a particular locus to improve power, and selecting a subset of rare variants for association testing, e.g., the step-up approach. We found that (a) if the variants being pooled are in linkage disequilibrium, the standard step-up method of selecting the best subset of variants results in loss of power compared to a model that pools all rare variants and (b) if the variants are in linkage equilibrium, performing a subset selection using step-based selection methods results in a gain of power of association compared to a model that pools all rare variants. Therefore, we propose an approach to selecting the best subset of variants to include in the model that is based on the linkage disequilibrium pattern among the rare variants. The proposed linkage disequilibrium-based variant selection model is flexible and borrows strength from the model that pools all rare variants when the rare variants are in linkage disequilibrium and from step-based selection methods when the variants are in linkage equilibrium. We performed simulations under three different realistic scenarios based on: (1) the HapMap3 dataset of the DRD2 gene, and CHRNA3/A5/B4 gene cluster (2) the block structure of linkage disequilibrium, and (3) linkage equilibrium. We proposed a permutation-based approach to control the type 1 error rate. The power comparisons after controlling the type 1 error show that the proposed linkage disequilibrium-based subset selection approach is an attractive alternative method for subset selection of rare variants.

摘要

稀有变异体越来越多地被认为是几种复杂疾病的主要病因。最近,已经提出了几种分析稀有变异体与疾病关联的方法。这些方法包括合并稀有变异体、在特定基因座内汇总稀有变异体的测试统计信息以提高效力,以及选择一组稀有变异体进行关联测试,例如逐步选择方法。我们发现:(a)如果合并的变异体处于连锁不平衡状态,则与合并所有稀有变异体的模型相比,选择最佳变异体子集的标准逐步方法会导致效力损失;(b)如果变异体处于连锁平衡状态,则与合并所有稀有变异体的模型相比,使用基于逐步选择方法的子集选择会导致关联效力的增加。因此,我们提出了一种选择最佳变异体子集以纳入模型的方法,该方法基于稀有变异体之间的连锁不平衡模式。所提出的基于连锁不平衡的变异体选择模型灵活,在稀有变异体处于连锁不平衡状态时从合并所有稀有变异体的模型中借用力量,在变异体处于连锁平衡状态时从基于逐步选择方法的模型中借用力量。我们根据以下三种不同的现实情况进行了模拟:(1)DRD2 基因和 CHRNA3/A5/B4 基因簇的 HapMap3 数据集;(2)连锁不平衡的块结构;(3)连锁平衡。我们提出了一种基于置换的方法来控制第一类错误率。在控制第一类错误率后的效力比较表明,所提出的基于连锁不平衡的子集选择方法是一种有吸引力的选择稀有变异子集的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b86/3708889/c09151551266/pone.0069226.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验