Wang Jian, Talluri Rajesh, Shete Sanjay
Department of Biostatistics-Unit 1411, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Department of Data Science, The University of Mississippi Medical Center, Jackson, MS, USA.
Cancer Inform. 2017 Dec 17;16:1176935117747272. doi: 10.1177/1176935117747272. eCollection 2017.
To address the complexity of the X-chromosome inactivation (XCI) process, we previously developed a unified approach for the association test for X-chromosomal single-nucleotide polymorphisms (SNPs) and the disease of interest, accounting for different biological possibilities of XCI: random, skewed, and escaping XCI. In the original study, we focused on the SNP-disease association test but did not provide knowledge regarding the underlying XCI models. One can use the highest likelihood ratio (LLR) to select XCI models (max-LLR approach). However, that approach does not formally compare the LLRs corresponding to different XCI models to assess whether the models are distinguishable. Therefore, we propose an LLR comparison procedure (comp-LLR approach), inspired by the Cox test, to formally compare the LLRs of different XCI models to select the most likely XCI model that describes the underlying XCI process. We conduct simulation studies to investigate the max-LLR and comp-LLR approaches. The simulation results show that compared with the max-LLR, the comp-LLR approach has higher probability of identifying the correct underlying XCI model for the scenarios when the underlying XCI process is random XCI, escaping XCI, or skewed XCI to the deleterious allele. We applied both approaches to a head and neck cancer genetic study to investigate the underlying XCI processes for the X-chromosomal genetic variants.
为了解决X染色体失活(XCI)过程的复杂性,我们之前开发了一种统一的方法,用于对X染色体单核苷酸多态性(SNP)与感兴趣的疾病进行关联测试,该方法考虑了XCI的不同生物学可能性:随机、偏态和逃避XCI。在最初的研究中,我们专注于SNP-疾病关联测试,但没有提供关于潜在XCI模型的知识。人们可以使用最高似然比(LLR)来选择XCI模型(最大LLR方法)。然而,该方法没有正式比较不同XCI模型对应的LLR,以评估这些模型是否可区分。因此,我们受Cox检验的启发,提出了一种LLR比较程序(比较LLR方法),以正式比较不同XCI模型的LLR,从而选择最能描述潜在XCI过程的XCI模型。我们进行了模拟研究,以探究最大LLR和比较LLR方法。模拟结果表明,与最大LLR相比,当潜在的XCI过程是随机XCI、逃避XCI或向有害等位基因偏态XCI时,比较LLR方法在识别正确的潜在XCI模型方面具有更高的概率。我们将这两种方法应用于一项头颈癌遗传学研究,以探究X染色体遗传变异的潜在XCI过程。