Suppr超能文献

X染色体失活模型的选择。

Selection of X-chromosome Inactivation Model.

作者信息

Wang Jian, Talluri Rajesh, Shete Sanjay

机构信息

Department of Biostatistics-Unit 1411, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Department of Data Science, The University of Mississippi Medical Center, Jackson, MS, USA.

出版信息

Cancer Inform. 2017 Dec 17;16:1176935117747272. doi: 10.1177/1176935117747272. eCollection 2017.

Abstract

To address the complexity of the X-chromosome inactivation (XCI) process, we previously developed a unified approach for the association test for X-chromosomal single-nucleotide polymorphisms (SNPs) and the disease of interest, accounting for different biological possibilities of XCI: random, skewed, and escaping XCI. In the original study, we focused on the SNP-disease association test but did not provide knowledge regarding the underlying XCI models. One can use the highest likelihood ratio (LLR) to select XCI models (max-LLR approach). However, that approach does not formally compare the LLRs corresponding to different XCI models to assess whether the models are distinguishable. Therefore, we propose an LLR comparison procedure (comp-LLR approach), inspired by the Cox test, to formally compare the LLRs of different XCI models to select the most likely XCI model that describes the underlying XCI process. We conduct simulation studies to investigate the max-LLR and comp-LLR approaches. The simulation results show that compared with the max-LLR, the comp-LLR approach has higher probability of identifying the correct underlying XCI model for the scenarios when the underlying XCI process is random XCI, escaping XCI, or skewed XCI to the deleterious allele. We applied both approaches to a head and neck cancer genetic study to investigate the underlying XCI processes for the X-chromosomal genetic variants.

摘要

为了解决X染色体失活(XCI)过程的复杂性,我们之前开发了一种统一的方法,用于对X染色体单核苷酸多态性(SNP)与感兴趣的疾病进行关联测试,该方法考虑了XCI的不同生物学可能性:随机、偏态和逃避XCI。在最初的研究中,我们专注于SNP-疾病关联测试,但没有提供关于潜在XCI模型的知识。人们可以使用最高似然比(LLR)来选择XCI模型(最大LLR方法)。然而,该方法没有正式比较不同XCI模型对应的LLR,以评估这些模型是否可区分。因此,我们受Cox检验的启发,提出了一种LLR比较程序(比较LLR方法),以正式比较不同XCI模型的LLR,从而选择最能描述潜在XCI过程的XCI模型。我们进行了模拟研究,以探究最大LLR和比较LLR方法。模拟结果表明,与最大LLR相比,当潜在的XCI过程是随机XCI、逃避XCI或向有害等位基因偏态XCI时,比较LLR方法在识别正确的潜在XCI模型方面具有更高的概率。我们将这两种方法应用于一项头颈癌遗传学研究,以探究X染色体遗传变异的潜在XCI过程。

相似文献

1
Selection of X-chromosome Inactivation Model.
Cancer Inform. 2017 Dec 17;16:1176935117747272. doi: 10.1177/1176935117747272. eCollection 2017.
2
5
A unified partial likelihood approach for X-chromosome association on time-to-event outcomes.
Genet Epidemiol. 2018 Feb;42(1):80-94. doi: 10.1002/gepi.22097. Epub 2017 Nov 26.
9
A finite mixture model for X-chromosome association with an emphasis on microbiome data analysis.
Genet Epidemiol. 2019 Jun;43(4):427-439. doi: 10.1002/gepi.22190. Epub 2019 Jan 18.

引用本文的文献

1
An X Chromosome Transcriptome Wide Association Study Implicates ARMCX6 in Alzheimer's Disease.
bioRxiv. 2023 Oct 5:2023.06.06.543877. doi: 10.1101/2023.06.06.543877.
2
eXclusionarY: 10 years later, where are the sex chromosomes in GWASs?
Am J Hum Genet. 2023 Jun 1;110(6):903-912. doi: 10.1016/j.ajhg.2023.04.009.
3
HostSeq: a Canadian whole genome sequencing and clinical data resource.
BMC Genom Data. 2023 May 2;24(1):26. doi: 10.1186/s12863-023-01128-3.
5
Major sex differences in allele frequencies for X chromosomal variants in both the 1000 Genomes Project and gnomAD.
PLoS Genet. 2022 May 31;18(5):e1010231. doi: 10.1371/journal.pgen.1010231. eCollection 2022 May.
7
The X factor: A robust and powerful approach to X-chromosome-inclusive whole-genome association studies.
Genet Epidemiol. 2021 Oct;45(7):694-709. doi: 10.1002/gepi.22422. Epub 2021 Jul 5.
8
Testing and estimation of X-chromosome SNP effects: Impact of model assumptions.
Genet Epidemiol. 2021 Sep;45(6):577-592. doi: 10.1002/gepi.22393. Epub 2021 Jun 3.

本文引用的文献

1
2
A linkage disequilibrium-based approach to selecting disease-associated rare variants.
PLoS One. 2013 Jul 11;8(7):e69226. doi: 10.1371/journal.pone.0069226. Print 2013.
4
Fifty years of X-inactivation research.
Development. 2011 Dec;138(23):5049-55. doi: 10.1242/dev.068320.
5
Genome-wide association study identifies novel loci predisposing to cutaneous melanoma.
Hum Mol Genet. 2011 Dec 15;20(24):5012-23. doi: 10.1093/hmg/ddr415. Epub 2011 Sep 17.
6
X chromosome association testing in genome wide association studies.
Genet Epidemiol. 2011 Nov;35(7):664-70. doi: 10.1002/gepi.20616. Epub 2011 Aug 4.
7
A longitudinal twin study of skewed X chromosome-inactivation.
PLoS One. 2011 Mar 22;6(3):e17873. doi: 10.1371/journal.pone.0017873.
8
Association tests for X-chromosomal markers--a comparison of different test statistics.
Hum Hered. 2011;71(1):23-36. doi: 10.1159/000323768. Epub 2011 Feb 16.
10
Skewing of X-inactivation ratios in blood cells of aging women is confirmed by independent methodologies.
Blood. 2009 Apr 9;113(15):3472-4. doi: 10.1182/blood-2008-12-195677. Epub 2009 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验