Suppr超能文献

大肠杆菌中低分子量 DNA 复制中间体:形成机制和链特异性。

Low-molecular-weight DNA replication intermediates in Escherichia coli: mechanism of formation and strand specificity.

机构信息

Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

J Mol Biol. 2013 Nov 15;425(22):4177-91. doi: 10.1016/j.jmb.2013.07.021. Epub 2013 Jul 20.

Abstract

Chromosomal DNA replication intermediates, revealed in ligase-deficient conditions in vivo, are of low molecular weight (LMW) independently of the organism, suggesting discontinuous replication of both the leading and the lagging DNA strands. Yet, in vitro experiments with purified enzymes replicating sigma-structured substrates show continuous synthesis of the leading DNA strand in complete absence of ligase, supporting the textbook model of semi-discontinuous DNA replication. The discrepancy between the in vivo and in vitro results is rationalized by proposing that various excision repair events nick continuously synthesized leading strands after synthesis, producing the observed LMW intermediates. Here, we show that, in an Escherichia coli ligase-deficient strain with all known excision repair pathways inactivated, new DNA is still synthesized discontinuously. Furthermore, hybridization to strand-specific targets demonstrates that the LMW replication intermediates come from both the lagging and the leading strands. These results support the model of discontinuous leading strand synthesis in E. coli.

摘要

染色体 DNA 复制中间体,在体内的连接酶缺陷条件下被揭示出来,其分子量较低(LMW),与生物体无关,表明前导链和滞后链的复制都是不连续的。然而,用纯化的酶在体外复制具有 σ 结构的底物的实验表明,即使没有连接酶,前导链也能连续合成,支持半不连续 DNA 复制的教科书模型。体内和体外实验结果之间的差异可以通过提出各种切除修复事件在合成后连续切断连续合成的前导链来解释,从而产生观察到的低分子量中间体。在这里,我们表明,在一种缺乏连接酶的大肠杆菌突变株中,所有已知的切除修复途径都被失活,仍然可以不连续地合成新的 DNA。此外,对链特异性靶标的杂交表明,低分子量复制中间体来自滞后链和前导链。这些结果支持大肠杆菌中不连续的前导链合成模型。

相似文献

3
4
Chromosome demise in the wake of ligase-deficient replication.在缺乏连接酶的复制之后染色体的消失。
Mol Microbiol. 2012 Jun;84(6):1079-96. doi: 10.1111/j.1365-2958.2012.08076.x. Epub 2012 May 14.

引用本文的文献

3
A Comprehensive View of Translesion Synthesis in Escherichia coli.大肠杆菌中跨损伤合成的全面观察
Microbiol Mol Biol Rev. 2020 Jun 17;84(3). doi: 10.1128/MMBR.00002-20. Print 2020 Aug 19.
4
Solution to the 50-year-old Okazaki-fragment problem.50年冈崎片段问题的解决方案。
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3358-3360. doi: 10.1073/pnas.1900372116. Epub 2019 Feb 15.
5
6
Replication Fork Breakage and Restart in Escherichia coli.大肠杆菌中复制叉的断裂与重连。
Microbiol Mol Biol Rev. 2018 Jun 13;82(3). doi: 10.1128/MMBR.00013-18. Print 2018 Sep.
8
Template-switching during replication fork repair in bacteria.细菌复制叉修复过程中的模板转换
DNA Repair (Amst). 2017 Aug;56:118-128. doi: 10.1016/j.dnarep.2017.06.014. Epub 2017 Jun 13.
10
Bacterial Proliferation: Keep Dividing and Don't Mind the Gap.细菌增殖:持续分裂,无视间隙。
PLoS Genet. 2015 Dec 29;11(12):e1005757. doi: 10.1371/journal.pgen.1005757. eCollection 2015 Dec.

本文引用的文献

2
Chromosome demise in the wake of ligase-deficient replication.在缺乏连接酶的复制之后染色体的消失。
Mol Microbiol. 2012 Jun;84(6):1079-96. doi: 10.1111/j.1365-2958.2012.08076.x. Epub 2012 May 14.
5
Genome instability due to ribonucleotide incorporation into DNA.由于核苷酸掺入 DNA 而导致的基因组不稳定。
Nat Chem Biol. 2010 Oct;6(10):774-81. doi: 10.1038/nchembio.424. Epub 2010 Aug 22.
6
Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases.酵母复制聚合酶将大量核苷酸掺入 DNA 中。
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4949-54. doi: 10.1073/pnas.0914857107. Epub 2010 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验