Suppr超能文献

当 DNA 拓扑结构变得致命时——RNA 聚合酶在 R 环中挖掘以坚守阵地:复制-转录冲突中的新的正、负(超)扭曲。

When DNA Topology Turns Deadly - RNA Polymerases Dig in Their R-Loops to Stand Their Ground: New Positive and Negative (Super)Twists in the Replication-Transcription Conflict.

机构信息

Department of Microbiology, University of Illinois at Urbana-Champaign, B103 CLSL, 601 South Goodwin Avenue, Urbana, IL 61801-3709, USA.

出版信息

Trends Genet. 2018 Feb;34(2):111-120. doi: 10.1016/j.tig.2017.10.007. Epub 2017 Nov 25.

Abstract

Head-on replication-transcription conflict is especially bitter in bacterial chromosomes, explaining why actively transcribed genes are always co-oriented with replication. The mechanism of this conflict remains unclear, besides the anticipated accumulation of positive supercoils between head-on-conflicting polymerases. Unexpectedly, experiments in bacterial and human cells reveal that head-on replication-transcription conflict induces R-loops, indicating hypernegative supercoiling [(-)sc] in the region - precisely the opposite of that assumed. Further, as a result of these R-loops, both replication and transcription in the affected region permanently stall, so the failure of R-loop removal in RNase H-deficient bacteria becomes lethal. How hyper(-)sc emerges in the middle of a positively supercoiled chromosomal domain is a mystery that requires rethinking of topoisomerase action around polymerases.

摘要

复制-转录冲突在细菌染色体中尤为严重,这解释了为什么活跃转录的基因总是与复制共取向。除了预期的正向冲突聚合酶之间正超螺旋的积累之外,这种冲突的机制仍不清楚。出乎意料的是,在细菌和人类细胞中的实验表明,复制-转录冲突会诱导 R 环,这表明在受影响区域中存在超负超螺旋[(-)sc],这恰恰与假设相反。此外,由于这些 R 环的存在,受影响区域中的复制和转录都会永久停顿,因此在 RNase H 缺陷型细菌中无法去除 R 环会导致致命。在正超螺旋的染色体区域中如何出现超负超螺旋是一个谜,需要重新思考聚合酶周围拓扑异构酶的作用。

相似文献

8
Hypernegative supercoiling inhibits growth by causing RNA degradation.
J Bacteriol. 2008 Nov;190(22):7346-56. doi: 10.1128/JB.00680-08. Epub 2008 Sep 12.

引用本文的文献

4
Synthetic lethal mutants in define pathways necessary for survival with RNase H deficiency.
J Bacteriol. 2023 Oct 26;205(10):e0028023. doi: 10.1128/jb.00280-23. Epub 2023 Oct 11.
5
RNase H genes cause distinct impacts on RNA:DNA hybrid formation and mutagenesis genome wide.
Sci Adv. 2023 Jul 28;9(30):eadi5945. doi: 10.1126/sciadv.adi5945. Epub 2023 Jul 26.
6
RNase H genes cause distinct impacts on RNA:DNA hybrid formation and mutagenesis genome-wide.
bioRxiv. 2023 May 8:2023.05.08.539860. doi: 10.1101/2023.05.08.539860.
7
Variable DNA topology is an epigenetic generator of physiological heterogeneity in bacterial populations.
Mol Microbiol. 2023 Jan;119(1):19-28. doi: 10.1111/mmi.15014. Epub 2022 Dec 30.
8
Dynamic Change of R-Loop Implicates in the Regulation of Zygotic Genome Activation in Mouse.
Int J Mol Sci. 2022 Nov 18;23(22):14345. doi: 10.3390/ijms232214345.

本文引用的文献

1
Activities of gyrase and topoisomerase IV on positively supercoiled DNA.
Nucleic Acids Res. 2017 Sep 19;45(16):9611-9624. doi: 10.1093/nar/gkx649.
4
Spatial and Temporal Control of Evolution through Replication-Transcription Conflicts.
Trends Microbiol. 2017 Jul;25(7):515-521. doi: 10.1016/j.tim.2017.01.008. Epub 2017 Feb 16.
5
The Replisomes Remain Spatially Proximal throughout the Cell Cycle in Bacteria.
PLoS Genet. 2017 Jan 23;13(1):e1006582. doi: 10.1371/journal.pgen.1006582. eCollection 2017 Jan.
6
Transcription leads to pervasive replisome instability in bacteria.
Elife. 2017 Jan 16;6:e19848. doi: 10.7554/eLife.19848.
7
The Causes and Consequences of Topological Stress during DNA Replication.
Genes (Basel). 2016 Dec 21;7(12):134. doi: 10.3390/genes7120134.
8
Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells.
Crit Rev Biochem Mol Biol. 2017 Feb;52(1):96-106. doi: 10.1080/10409238.2016.1269717. Epub 2016 Dec 23.
9
Non-SMC Element 2 (NSMCE2) of the SMC5/6 Complex Helps to Resolve Topological Stress.
Int J Mol Sci. 2016 Oct 26;17(11):1782. doi: 10.3390/ijms17111782.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验