Suppr超能文献

轴对称颗粒随机密堆积的平均场理论。

Mean-field theory of random close packings of axisymmetric particles.

机构信息

Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA.

出版信息

Nat Commun. 2013;4:2194. doi: 10.1038/ncomms3194.

Abstract

Finding the optimal random packing of non-spherical particles is an open problem with great significance in a broad range of scientific and engineering fields. So far, this search has been performed only empirically on a case-by-case basis, in particular, for shapes like dimers, spherocylinders and ellipsoids of revolution. Here we present a mean-field formalism to estimate the packing density of axisymmetric non-spherical particles. We derive an analytic continuation from the sphere that provides a phase diagram predicting that, for the same coordination number, the density of monodisperse random packings follows the sequence of increasing packing fractions: spheres <oblate ellipsoids <prolate ellipsoids <dimers <spherocylinders. We find the maximal packing densities of 73.1% for spherocylinders and 70.7% for dimers, in good agreement with the largest densities found in simulations. Moreover, we find a packing density of 73.6% for lens-shaped particles, representing the densest random packing of the axisymmetric objects studied so far.

摘要

寻找非球形颗粒的最优随机堆积是一个具有广泛科学和工程意义的开放性问题。到目前为止,这种搜索只在特定情况下进行了经验性的研究,特别是对于二聚体、旋转椭球体和旋转椭球体等形状。在这里,我们提出了一种平均场理论来估计轴对称非球形颗粒的堆积密度。我们从球体中推导出一个解析延拓,该延拓提供了一个相图,预测对于相同的配位数,单分散随机堆积的密度遵循以下堆积分数的顺序:球体 <扁长椭球体 <长椭球体 <二聚体 <旋转椭球体。我们发现旋转椭球体的最大堆积密度为 73.1%,二聚体的最大堆积密度为 70.7%,与模拟中发现的最大密度非常吻合。此外,我们还发现了透镜形颗粒的堆积密度为 73.6%,这代表了迄今为止研究的轴对称物体中最密集的随机堆积。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验