Suppr超能文献

相似文献

1
Coupled motions in enzyme catalysis.
Curr Opin Chem Biol. 2010 Oct;14(5):644-51. doi: 10.1016/j.cbpa.2010.07.020. Epub 2010 Aug 20.
2
Catalytic efficiency of enzymes: a theoretical analysis.
Biochemistry. 2013 Mar 26;52(12):2012-20. doi: 10.1021/bi301515j. Epub 2012 Dec 20.
3
Role of dynamics in enzyme catalysis: substantial versus semantic controversies.
Acc Chem Res. 2015 Feb 17;48(2):466-73. doi: 10.1021/ar500322s. Epub 2014 Dec 24.
4
Perspectives on electrostatics and conformational motions in enzyme catalysis.
Acc Chem Res. 2015 Feb 17;48(2):482-9. doi: 10.1021/ar500390e. Epub 2015 Jan 7.
5
Low-Frequency Protein Motions Coupled to Catalytic Sites.
Annu Rev Phys Chem. 2020 Apr 20;71:267-288. doi: 10.1146/annurev-physchem-050317-014308.
6
Transition States and transition state analogue interactions with enzymes.
Acc Chem Res. 2015 Apr 21;48(4):1032-9. doi: 10.1021/acs.accounts.5b00002. Epub 2015 Apr 7.
7
Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function.
Prog Nucl Magn Reson Spectrosc. 2016 Feb;92-93:1-17. doi: 10.1016/j.pnmrs.2015.11.001. Epub 2015 Dec 7.
8
Protein dynamics and enzyme catalysis: insights from simulations.
Biochim Biophys Acta. 2011 Aug;1814(8):1077-92. doi: 10.1016/j.bbapap.2010.12.002. Epub 2010 Dec 15.
9
Dynamically achieved active site precision in enzyme catalysis.
Acc Chem Res. 2015 Feb 17;48(2):449-56. doi: 10.1021/ar5003347. Epub 2014 Dec 24.
10
A perspective on enzyme catalysis.
Science. 2003 Aug 29;301(5637):1196-202. doi: 10.1126/science.1085515.

引用本文的文献

1
Dynamic energy conversion in protein catalysis: From brownian motion to enzymatic function.
Comput Struct Biotechnol J. 2025 Jul 30;27:3337-3369. doi: 10.1016/j.csbj.2025.07.050. eCollection 2025.
3
Conformational flexibility of His200 enables catalytic activity in the T200H mutant of carbonic anhydrase II.
Mol Cells. 2025 Jul;48(7):100226. doi: 10.1016/j.mocell.2025.100226. Epub 2025 May 27.
4
Fast product release requires active-site water dynamics in carbonic anhydrase.
Nat Commun. 2025 May 12;16(1):4404. doi: 10.1038/s41467-025-59645-x.
6
Temporal Resolution of Activity-Related Solvation Dynamics in the TIM Barrel Enzyme Murine Adenosine Deaminase.
ACS Catal. 2024 Apr 5;14(7):4554-4567. doi: 10.1021/acscatal.3c02687. Epub 2024 Mar 12.
7
A role for conformational changes in enzyme catalysis.
Biophys J. 2024 Jun 18;123(12):1563-1578. doi: 10.1016/j.bpj.2024.04.030. Epub 2024 May 3.
8
Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins.
Nat Chem. 2024 Jul;16(7):1200-1208. doi: 10.1038/s41557-024-01490-4. Epub 2024 May 3.
9
Ratcheting synthesis.
Nat Rev Chem. 2024 Jan;8(1):8-29. doi: 10.1038/s41570-023-00558-y. Epub 2023 Dec 15.

本文引用的文献

3
Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands.
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1373-8. doi: 10.1073/pnas.0914163107. Epub 2010 Jan 8.
5
Solvent effects on catalysis by Escherichia coli dihydrofolate reductase.
J Am Chem Soc. 2010 Jan 27;132(3):1137-43. doi: 10.1021/ja909353c.
6
Hidden alternative structures of proline isomerase essential for catalysis.
Nature. 2009 Dec 3;462(7273):669-73. doi: 10.1038/nature08615.
7
Differential quantum tunneling contributions in nitroalkane oxidase catalyzed and the uncatalyzed proton transfer reaction.
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20734-9. doi: 10.1073/pnas.0911416106. Epub 2009 Nov 19.
8
Enzymatic transition states and dynamic motion in barrier crossing.
Nat Chem Biol. 2009 Aug;5(8):551-8. doi: 10.1038/nchembio.202.
9
A 21st century revisionist's view at a turning point in enzymology.
Nat Chem Biol. 2009 Aug;5(8):543-50. doi: 10.1038/nchembio.204.
10
The far reaches of enzymology.
Nat Chem Biol. 2009 Aug;5(8):516-20. doi: 10.1038/nchembio0809-516.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验