Suppr超能文献

在上路径环裂二氧酶的分离是施氏假单胞菌 RW1 生长在二苯并呋喃和二苯并对二恶英上所必需的。

Separate Upper Pathway Ring Cleavage Dioxygenases Are Required for Growth of Sphingomonas wittichii Strain RW1 on Dibenzofuran and Dibenzo--Dioxin.

机构信息

Department of Biology, College of Science, University of Anbar, Ramadi, Iraq.

Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA.

出版信息

Appl Environ Microbiol. 2021 May 11;87(11). doi: 10.1128/AEM.02464-20.

Abstract

RW1 is one of a few strains known to grow on the related compounds dibenzofuran (DBF) and dibenzo--dioxin (DXN) as the sole source of carbon. Previous work by others (B. Happe, L. D. Eltis, H. Poth, R. Hedderich, and K. N. Timmis, J Bacteriol 175:7313-7320, 1993, https://doi.org/10.1128/jb.175.22.7313-7320.1993) showed that purified DbfB had significant ring cleavage activity against the DBF metabolite trihydroxybiphenyl but little activity against the DXN metabolite trihydroxybiphenylether. We took a physiological approach to positively identify ring cleavage enzymes involved in the DBF and DXN pathways. Knockout of on the RW1 megaplasmid pSWIT02 results in a strain that grows slowly on DBF but normally on DXN, confirming that DbfB is not involved in DXN degradation. Knockout of SWIT3046 on the RW1 chromosome results in a strain that grows normally on DBF but that does not grow on DXN, demonstrating that SWIT3046 is required for DXN degradation. A double-knockout strain does not grow on either DBF or DXN, demonstrating that these are the only ring cleavage enzymes involved in RW1 DBF and DXN degradation. The replacement of by SWIT3046 results in a strain that grows normally (equal to the wild type) on both DBF and DXN, showing that promoter strength is important for SWIT3046 to take the place of DbfB in DBF degradation. Thus, both and SWIT3046-encoded enzymes are involved in DBF degradation, but only the SWIT3046-encoded enzyme is involved in DXN degradation. RW1 has been the subject of numerous investigations, because it is one of only a few strains known to grow on DXN as the sole carbon and energy source. However, while the genome has been sequenced and several DBF pathway enzymes have been purified, there has been very little research using physiological techniques to precisely identify the genes and enzymes involved in the RW1 DBF and DXN catabolic pathways. Using knockout and gene replacement mutagenesis, our work identifies separate upper pathway ring cleavage enzymes involved in the related catabolic pathways for DBF and DXN degradation. The identification of a new enzyme involved in DXN biodegradation explains why the pathway of DBF degradation on the RW1 megaplasmid pSWIT02 is inefficient for DXN degradation. In addition, our work demonstrates that both plasmid- and chromosomally encoded enzymes are necessary for DXN degradation, suggesting that the DXN pathway has only recently evolved.

摘要

RW1 是少数几种能够以二苯并呋喃 (DBF) 和二苯并--二恶英 (DXN) 为唯一碳源生长的菌株之一。其他人的先前工作(B. Happe、L. D. Eltis、H. Poth、R. Hedderich 和 K. N. Timmis,J. Bacteriol. 175:7313-7320, 1993, https://doi.org/10.1128/jb.175.22.7313-7320.1993)表明,纯化的 DbfB 对 DBF 代谢物三羟基联苯具有显著的环裂解活性,但对 DXN 代谢物三羟基联苯醚的活性很小。我们采用生理学方法来积极鉴定参与 DBF 和 DXN 途径的环裂解酶。RW1 巨型质粒 pSWIT02 上的 缺失会导致菌株在 DBF 上生长缓慢,但在 DXN 上正常生长,这证实了 DbfB 不参与 DXN 降解。RW1 染色体上的 SWIT3046 缺失会导致菌株在 DBF 上正常生长但在 DXN 上不生长,表明 SWIT3046 是 DXN 降解所必需的。双缺失菌株既不能在 DBF 上也不能在 DXN 上生长,这表明这些是 RW1 DBF 和 DXN 降解中仅有的环裂解酶。用 SWIT3046 替换 会导致菌株在 DBF 和 DXN 上正常生长(与野生型相同),表明启动子强度对于 SWIT3046 在 DBF 降解中取代 DbfB 很重要。因此,和 SWIT3046 编码的酶都参与了 DBF 的降解,但只有 SWIT3046 编码的酶参与了 DXN 的降解。RW1 已经成为众多研究的主题,因为它是少数几种已知能够以 DXN 作为唯一碳源和能源生长的菌株之一。然而,尽管已经对其基因组进行了测序,并且已经纯化了几种 DBF 途径酶,但使用生理学技术精确鉴定 RW1 DBF 和 DXN 分解代谢途径中涉及的基因和酶的研究却很少。通过基因缺失和基因替换诱变,我们的工作确定了参与 DBF 和 DXN 降解相关分解代谢途径的单独的上游途径环裂解酶。新的 DXN 生物降解酶的鉴定解释了为什么 RW1 巨型质粒 pSWIT02 上的 DBF 降解途径对 DXN 降解效率低下。此外,我们的工作表明,质粒和染色体编码的酶都需要用于 DXN 降解,这表明 DXN 途径是最近才进化而来的。

相似文献

3
Shotgun proteomics suggests involvement of additional enzymes in dioxin degradation by Sphingomonas wittichii RW1.
Environ Microbiol. 2014 Jan;16(1):162-76. doi: 10.1111/1462-2920.12264. Epub 2013 Sep 30.
4
Physiological role of isocitrate lyase in dibenzo-p-dioxin and dibenzofuran metabolism by Sphingomonas wittichii RW1.
J Genet Eng Biotechnol. 2022 Mar 30;20(1):52. doi: 10.1186/s43141-022-00334-3.
6
Biochemical and genetic characterization comparison of four extradiol dioxygenases in Rhizorhabdus wittichii RW1.
Appl Microbiol Biotechnol. 2022 Sep;106(17):5539-5550. doi: 10.1007/s00253-022-12099-3. Epub 2022 Jul 30.
7
Genome-Wide Analysis of Salicylate and Dibenzofuran Metabolism in Sphingomonas Wittichii RW1.
Front Microbiol. 2012 Aug 23;3:300. doi: 10.3389/fmicb.2012.00300. eCollection 2012.
8
Proteomic profiling of the dioxin-degrading bacterium Sphingomonas wittichii RW1.
J Biomed Biotechnol. 2012;2012:408690. doi: 10.1155/2012/408690. Epub 2012 Oct 2.
9
Genetic analysis of dioxin dioxygenase of Sphingomonas sp. Strain RW1: catabolic genes dispersed on the genome.
J Bacteriol. 1998 Aug;180(15):3954-66. doi: 10.1128/JB.180.15.3954-3966.1998.
10
Biodegradation pathway of 2-chlorodibenzo-p-dioxin and 2-chlorodibenzofuran in the biphenyl-utilising strain JB1.
Chemosphere. 1998 Oct-Nov;37(9-12):1915-22. doi: 10.1016/s0045-6535(98)00258-6.

引用本文的文献

本文引用的文献

1
Bioavailability of clay-adsorbed dioxin to Sphingomonas wittichii RW1 and its associated genome-wide shifts in gene expression.
Sci Total Environ. 2020 Apr 10;712:135525. doi: 10.1016/j.scitotenv.2019.135525. Epub 2019 Nov 21.
2
Sphingomonas wittichii Strain RW1 Genome-Wide Gene Expression Shifts in Response to Dioxins and Clay.
PLoS One. 2016 Jun 16;11(6):e0157008. doi: 10.1371/journal.pone.0157008. eCollection 2016.
4
Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand.
ISME J. 2015 Jan;9(1):150-65. doi: 10.1038/ismej.2014.101. Epub 2014 Jun 17.
5
Shotgun proteomics suggests involvement of additional enzymes in dioxin degradation by Sphingomonas wittichii RW1.
Environ Microbiol. 2014 Jan;16(1):162-76. doi: 10.1111/1462-2920.12264. Epub 2013 Sep 30.
6
Degradative plasmids from sphingomonads.
FEMS Microbiol Lett. 2014 Jan;350(1):9-19. doi: 10.1111/1574-6968.12283. Epub 2013 Oct 10.
7
The lid domain of the MCP hydrolase DxnB2 contributes to the reactivity toward recalcitrant PCB metabolites.
Biochemistry. 2013 Aug 20;52(33):5685-5695. doi: 10.1021/bi400774m. Epub 2013 Aug 9.
9
Proteomic profiling of the dioxin-degrading bacterium Sphingomonas wittichii RW1.
J Biomed Biotechnol. 2012;2012:408690. doi: 10.1155/2012/408690. Epub 2012 Oct 2.
10
Genome-Wide Analysis of Salicylate and Dibenzofuran Metabolism in Sphingomonas Wittichii RW1.
Front Microbiol. 2012 Aug 23;3:300. doi: 10.3389/fmicb.2012.00300. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验