Molecular Therapeutics, School of Pharmacy, Medical Biology Centre, Queen's University, Belfast BT9 7BL, Northern Ireland, UK.
Biochemistry. 2013 Aug 20;52(33):5593-603. doi: 10.1021/bi400499n. Epub 2013 Aug 7.
The biased agonism of the G protein-coupled receptors (GPCRs), where in addition to a traditional G protein-signaling pathway a GPCR promotes intracellular signals though β-arrestin, is a novel paradigm in pharmacology. Biochemical and biophysical studies have suggested that a GPCR forms a distinct ensemble of conformations signaling through the G protein and β-arrestin. Here we report on the dynamics of the β2 adrenergic receptor bound to the β-arrestin and G protein-biased agonists and the empty receptor to further characterize the receptor conformational changes caused by biased agonists. We use conventional and accelerated molecular dynamics (aMD) simulations to explore the conformational transitions of the GPCR from the active state to the inactive state. We found that aMD simulations enable monitoring of the transition within the nanosecond time scale while capturing the known microscopic characteristics of the inactive states, such as the ionic lock, the inward position of F6.44, and water clusters. Distinct conformational states are shown to be stabilized by each biased agonist. In particular, in simulations of the receptor with the β-arrestin-biased agonist N-cyclopentylbutanepherine, we observe a different pattern of motions in helix 7 when compared to simulations with the G protein-biased agonist salbutamol that involves perturbations of the network of interactions within the NPxxY motif. Understanding the network of interactions induced by biased ligands and the subsequent receptor conformational shifts will lead to development of more efficient drugs.
G 蛋白偶联受体(GPCR)的偏激动效应,即在传统的 G 蛋白信号通路之外,GPCR 通过β-arrestin 促进细胞内信号转导,是药理学中的一个新范式。生化和生物物理研究表明,GPCR 形成了一个独特的构象集合,通过 G 蛋白和β-arrestin 进行信号转导。在这里,我们报告了β2 肾上腺素能受体与β-arrestin 和 G 蛋白偏向激动剂结合的动力学,以及空受体的动力学,以进一步表征偏向激动剂引起的受体构象变化。我们使用传统和加速分子动力学(aMD)模拟来探索 GPCR 从激活状态到非激活状态的构象转变。我们发现 aMD 模拟能够在纳秒时间尺度内监测转变,同时捕捉到非激活状态的已知微观特征,如离子锁、F6.44 的内移位置和水簇。每个偏向激动剂都稳定了不同的构象状态。特别是,在与β-arrestin 偏向激动剂 N-环戊基丁烷酚结合的受体模拟中,与 G 蛋白偏向激动剂沙丁胺醇的模拟相比,我们观察到 7 号螺旋中的运动模式不同,涉及 NPxxY 基序内相互作用网络的扰动。理解偏向配体诱导的相互作用网络和随后的受体构象位移将导致更有效药物的开发。