Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
Nature. 2013 May 2;497(7447):137-41. doi: 10.1038/nature12120. Epub 2013 Apr 21.
The functions of G-protein-coupled receptors (GPCRs) are primarily mediated and modulated by three families of proteins: the heterotrimeric G proteins, the G-protein-coupled receptor kinases (GRKs) and the arrestins. G proteins mediate activation of second-messenger-generating enzymes and other effectors, GRKs phosphorylate activated receptors, and arrestins subsequently bind phosphorylated receptors and cause receptor desensitization. Arrestins activated by interaction with phosphorylated receptors can also mediate G-protein-independent signalling by serving as adaptors to link receptors to numerous signalling pathways. Despite their central role in regulation and signalling of GPCRs, a structural understanding of β-arrestin activation and interaction with GPCRs is still lacking. Here we report the crystal structure of β-arrestin-1 (also called arrestin-2) in complex with a fully phosphorylated 29-amino-acid carboxy-terminal peptide derived from the human V2 vasopressin receptor (V2Rpp). This peptide has previously been shown to functionally and conformationally activate β-arrestin-1 (ref. 5). To capture this active conformation, we used a conformationally selective synthetic antibody fragment (Fab30) that recognizes the phosphopeptide-activated state of β-arrestin-1. The structure of the β-arrestin-1-V2Rpp-Fab30 complex shows marked conformational differences in β-arrestin-1 compared to its inactive conformation. These include rotation of the amino- and carboxy-terminal domains relative to each other, and a major reorientation of the 'lariat loop' implicated in maintaining the inactive state of β-arrestin-1. These results reveal, at high resolution, a receptor-interacting interface on β-arrestin, and they indicate a potentially general molecular mechanism for activation of these multifunctional signalling and regulatory proteins.
G 蛋白偶联受体(GPCRs)的功能主要由三种蛋白家族介导和调节:异三聚体 G 蛋白、G 蛋白偶联受体激酶(GRKs)和 arrestin。G 蛋白介导第二信使生成酶和其他效应物的激活,GRKs 磷酸化激活的受体,随后 arrestin 结合磷酸化的受体并导致受体脱敏。与磷酸化受体相互作用激活的 arrestin 还可以作为衔接子将受体与许多信号通路连接起来,从而介导 G 蛋白非依赖性信号转导。尽管它们在 GPCR 调节和信号转导中起着核心作用,但对β-arrestin 激活和与 GPCR 相互作用的结构理解仍然缺乏。在这里,我们报告了β-arrestin-1(也称为 arrestin-2)与源自人类 V2 血管加压素受体(V2Rpp)的全长 29 个氨基酸羧基末端肽复合物的晶体结构。该肽段先前已被证明可在功能和构象上激活β-arrestin-1(参考文献 5)。为了捕获这种活性构象,我们使用了一种构象选择性的合成抗体片段(Fab30),该片段识别β-arrestin-1 的磷酸肽激活状态。β-arrestin-1-V2Rpp-Fab30 复合物的结构显示,与非活性构象相比,β-arrestin-1 存在明显的构象差异。这些差异包括氨基末端和羧基末端结构域彼此之间的旋转,以及“套索环”的主要重定向,该环涉及维持β-arrestin-1 的非活性状态。这些结果以高分辨率揭示了β-arrestin 上的受体相互作用界面,并表明了这些多功能信号转导和调节蛋白激活的潜在普遍分子机制。