Suppr超能文献

银纳米粒子和离子的生物利用度:从化学和生物化学角度来看。

Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective.

机构信息

Eawag, Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, PO Box 611, 8600 Dübendorf, Switzerland.

出版信息

J R Soc Interface. 2013 Jul 24;10(87):20130396. doi: 10.1098/rsif.2013.0396. Print 2013 Oct 6.

Abstract

Owing to their antimicrobial properties, silver nanoparticles (NPs) are the most commonly used engineered nanomaterial for use in a wide array of consumer and medical applications. Many discussions are currently ongoing as to whether or not exposure of silver NPs to the ecosystem (i.e. plants and animals) may be conceived as harmful or not. Metallic silver, if released into the environment, can undergo chemical and biochemical conversion which strongly influence its availability towards any biological system. During this process, in the presence of moisture, silver can be oxidized resulting in the release of silver ions. To date, it is still debatable as to whether any biological impact of nanosized silver is relative to either its size, or to its ionic constitution. The aim of this review therefore is to provide a comprehensive, interdisciplinary overview--for biologists, chemists, toxicologists as well as physicists--regarding the production of silver NPs, its (as well as in their ionic form) chemical and biochemical behaviours towards/within a multitude of relative and realistic biological environments and also how such interactions may be correlated across a plethora of different biological organisms.

摘要

由于其抗菌特性,银纳米粒子(NPs)是最常用于广泛的消费和医疗应用的工程纳米材料。目前正在进行许多讨论,即银 NPs 是否暴露于生态系统(即植物和动物)中可能被认为是有害的。如果将金属银释放到环境中,它可以经历化学和生物化学转化,这强烈影响其对任何生物系统的可用性。在这个过程中,在潮湿的环境中,银可以被氧化,导致银离子的释放。迄今为止,关于纳米银的任何生物学影响是否与其大小或离子组成有关,仍存在争议。因此,本综述的目的是为生物学家、化学家、毒理学家以及物理学家提供一个全面的、跨学科的概述,介绍银 NPs 的生产,以及其(以及其离子形式)在多种相关和现实的生物环境中的化学和生物化学行为,以及这种相互作用如何在众多不同的生物有机体中相关。

相似文献

1
Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective.
J R Soc Interface. 2013 Jul 24;10(87):20130396. doi: 10.1098/rsif.2013.0396. Print 2013 Oct 6.
2
Fate and toxicity of silver nanoparticles in freshwater from laboratory to realistic environments: a review.
Environ Sci Pollut Res Int. 2019 Mar;26(8):7390-7404. doi: 10.1007/s11356-019-04150-0. Epub 2019 Jan 23.
3
Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.
Nanotoxicology. 2014 Nov;8(7):718-27. doi: 10.3109/17435390.2013.824127. Epub 2013 Aug 1.
4
Behavioural effects on marine amphipods exposed to silver ions and silver nanoparticles.
Environ Pollut. 2019 Sep;252(Pt B):1051-1058. doi: 10.1016/j.envpol.2019.06.005. Epub 2019 Jun 4.
5
In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells.
Environ Sci Technol. 2009 Aug 1;43(15):6046-51. doi: 10.1021/es900754q.
6
Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver.
ACS Nano. 2014 Jan 28;8(1):374-86. doi: 10.1021/nn4044047. Epub 2013 Dec 24.
8
Silver nanoparticles: behaviour and effects in the aquatic environment.
Environ Int. 2011 Feb;37(2):517-31. doi: 10.1016/j.envint.2010.10.012. Epub 2010 Dec 14.
9
A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms.
Regul Toxicol Pharmacol. 2018 Oct;98:231-239. doi: 10.1016/j.yrtph.2018.08.003. Epub 2018 Aug 7.

引用本文的文献

1
Particle-Driven Synergistic Antibacterial Effect of Silver-Chitosan Nanocomposites Against , , and.
ACS Omega. 2025 Jun 23;10(26):27904-27919. doi: 10.1021/acsomega.5c01067. eCollection 2025 Jul 8.
2
Investigation of Cell Damage Induced by Silver Nanoparticles in a Model Cell System.
Pharmaceutics. 2025 Mar 21;17(4):398. doi: 10.3390/pharmaceutics17040398.
4
Silver Nanoparticles Exposure Impairs Cardiac Development by Suppressing the Focal Adhesion Pathway in Zebrafish.
Int J Nanomedicine. 2024 Sep 9;19:9291-9304. doi: 10.2147/IJN.S476168. eCollection 2024.
5
Multigenerational exposure of Ag materials (nano and salt) in soil - environmental hazards in (Oligochaeta).
Nanoscale Adv. 2023 Nov 22;6(3):826-831. doi: 10.1039/d3na00487b. eCollection 2024 Jan 30.
6
The Occurrence of Oxidative Stress Induced by Silver Nanoparticles in Depends on the Surface-Stabilizing Agent.
Nanomaterials (Basel). 2023 Jun 28;13(13):1967. doi: 10.3390/nano13131967.
7
Impact of Chronic Oral Administration of Gold Nanoparticles on Cognitive Abilities of Mice.
Int J Mol Sci. 2023 May 18;24(10):8962. doi: 10.3390/ijms24108962.
8
Comparative in vivo toxicokinetics of silver powder, nanosilver and soluble silver compounds after oral administration to rats.
Arch Toxicol. 2023 Jul;97(7):1859-1872. doi: 10.1007/s00204-023-03511-6. Epub 2023 May 17.
9
Nanoemulsion-based silver ion-selective optode based on colorimetrically silver ion-responsive ionic liquid-based dye.
Anal Sci. 2023 Aug;39(8):1249-1256. doi: 10.1007/s44211-023-00337-1. Epub 2023 Apr 12.
10
A spatiotemporal drug release scaffold with antibiosis and bone regeneration for osteomyelitis.
J Adv Res. 2023 Dec;54:239-249. doi: 10.1016/j.jare.2023.01.019. Epub 2023 Jan 24.

本文引用的文献

1
Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface.
Part Fibre Toxicol. 2013 Apr 4;10:11. doi: 10.1186/1743-8977-10-11.
2
Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine.
Chem Rev. 2013 Jul 10;113(7):4708-54. doi: 10.1021/cr300288v. Epub 2013 Mar 15.
3
Silver as antibacterial agent: ion, nanoparticle, and metal.
Angew Chem Int Ed Engl. 2013 Feb 4;52(6):1636-53. doi: 10.1002/anie.201205923. Epub 2012 Dec 17.
4
Biomolecular coronas provide the biological identity of nanosized materials.
Nat Nanotechnol. 2012 Dec;7(12):779-86. doi: 10.1038/nnano.2012.207.
5
Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure.
Environ Toxicol Chem. 2013 Jan;32(1):165-73. doi: 10.1002/etc.2038. Epub 2012 Nov 26.
6
Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus.
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18355-60. doi: 10.1073/pnas.1214066109. Epub 2012 Oct 22.
8
Chemical transformations of nanosilver in biological environments.
ACS Nano. 2012 Nov 27;6(11):9887-99. doi: 10.1021/nn303449n. Epub 2012 Oct 17.
9
Interaction of silver nanoparticles with pure nitrifying bacteria.
Chemosphere. 2013 Jan;90(4):1404-11. doi: 10.1016/j.chemosphere.2012.08.032. Epub 2012 Sep 15.
10
Effects of silver nanoparticles in diatom Thalassiosira pseudonana and cyanobacterium Synechococcus sp.
Environ Sci Technol. 2012 Oct 16;46(20):11336-44. doi: 10.1021/es300989e. Epub 2012 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验