Suppr超能文献

飞行能力的丧失与昆虫更快的分子进化有关。

Flight loss linked to faster molecular evolution in insects.

机构信息

Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1.

出版信息

Proc Biol Sci. 2013 Jul 24;280(1767):20131128. doi: 10.1098/rspb.2013.1128. Print 2013 Sep 22.

Abstract

The loss of flight ability has occurred thousands of times independently during insect evolution. Flight loss may be linked to higher molecular evolutionary rates because of reductions in effective population sizes (Ne) and relaxed selective constraints. Reduced dispersal ability increases population subdivision, may decrease geographical range size and increases (sub)population extinction risk, thus leading to an expected reduction in Ne. Additionally, flight loss in birds has been linked to higher molecular rates of energy-related genes, probably owing to relaxed selective constraints on energy metabolism. We tested for an association between insect flight loss and molecular rates through comparative analysis in 49 phylogenetically independent transitions spanning multiple taxa, including moths, flies, beetles, mayflies, stick insects, stoneflies, scorpionflies and caddisflies, using available nuclear and mitochondrial protein-coding DNA sequences. We estimated the rate of molecular evolution of flightless (FL) and related flight-capable lineages by ratios of non-synonymous-to-synonymous substitutions (dN/dS) and overall substitution rates (OSRs). Across multiple instances of flight loss, we show a significant pattern of higher dN/dS ratios and OSRs in FL lineages in mitochondrial but not nuclear genes. These patterns may be explained by relaxed selective constraints in FL ectotherms relating to energy metabolism, possibly in combination with reduced Ne.

摘要

昆虫在进化过程中曾数千次独立地失去飞行能力。由于有效种群数量 (Ne) 减少和选择压力放松,飞行能力的丧失可能与更高的分子进化率有关。扩散能力的降低增加了种群的分裂,可能会降低地理范围的大小,并增加(亚)种群灭绝的风险,从而导致 Ne 的预期减少。此外,鸟类的飞行能力丧失与与能量相关的基因的更高分子率有关,这可能是由于对能量代谢的选择压力放松。我们通过比较分析跨越多个分类群的 49 个独立进化的转变,包括飞蛾、苍蝇、甲虫、蜉蝣、竹节虫、石蝇、蝎蛉和石蛾,使用现有的核和线粒体蛋白编码 DNA 序列,测试了昆虫飞行能力丧失与分子率之间的关联。我们通过非同义替换与同义替换的比值 (dN/dS) 和总替换率 (OSR) 来估计无翅 (FL) 和相关有翅谱系的分子进化率。在多次飞行能力丧失的情况下,我们在线粒体基因中而不是在核基因中显示出 FL 谱系中 dN/dS 比值和 OSR 显著升高的模式。这些模式可能是由于与能量代谢有关的 FL 外温动物的选择压力放松,可能与 Ne 的减少有关。

相似文献

1
Flight loss linked to faster molecular evolution in insects.
Proc Biol Sci. 2013 Jul 24;280(1767):20131128. doi: 10.1098/rspb.2013.1128. Print 2013 Sep 22.
2
Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes.
Gigascience. 2017 Oct 1;6(10):1-14. doi: 10.1093/gigascience/gix073.
3
Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.
PLoS One. 2014 Jun 11;9(6):e99120. doi: 10.1371/journal.pone.0099120. eCollection 2014.
4
Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability.
Genome Res. 2009 Oct;19(10):1760-5. doi: 10.1101/gr.093138.109. Epub 2009 Jul 17.
5
Loss of flight promotes beetle diversification.
Nat Commun. 2012 Jan 31;3:648. doi: 10.1038/ncomms1659.
6
Disentangling Positive Selection from Relaxed Selection in Animal Mitochondrial Genomes.
Am Nat. 2023 Oct;202(4):E121-E129. doi: 10.1086/725805. Epub 2023 Aug 31.
7
Analysis of selective constraints on mitochondrial DNA, flight ability and physiological index on avian.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1498-501. doi: 10.1109/EMBC.2013.6609796.
8
Do insects lose flight before they lose their wings? Population genetic structure in subalpine stoneflies.
Mol Ecol. 2009 Oct;18(19):4073-87. doi: 10.1111/j.1365-294X.2009.04337.x. Epub 2009 Sep 15.

引用本文的文献

1
Evolution of the Mitogenome: Insights Into the Mitogenomic Evolution of the Orders Siphonaptera and the Phthiraptera.
Ecol Evol. 2025 Mar 11;15(3):e71108. doi: 10.1002/ece3.71108. eCollection 2025 Mar.
2
Mitochondrial Genomic Evidence of Selective Constraints in Small-Bodied Terrestrial Cetartiodactyla.
Animals (Basel). 2024 May 10;14(10):1434. doi: 10.3390/ani14101434.
7
Disentangling Positive Selection from Relaxed Selection in Animal Mitochondrial Genomes.
Am Nat. 2023 Oct;202(4):E121-E129. doi: 10.1086/725805. Epub 2023 Aug 31.

本文引用的文献

1
The Palaeoptera Problem: Basal Pterygote Phylogeny Inferred from 18S and 28S rDNA Sequences.
Cladistics. 2002 Jun;18(3):313-323. doi: 10.1111/j.1096-0031.2002.tb00153.x.
3
Loss of flight promotes beetle diversification.
Nat Commun. 2012 Jan 31;3:648. doi: 10.1038/ncomms1659.
6
Ancient origin of endemic Iberian earth-boring dung beetles (Geotrupidae).
Mol Phylogenet Evol. 2011 Jun;59(3):578-86. doi: 10.1016/j.ympev.2011.03.028. Epub 2011 Apr 5.
7
Flightlessness in insects.
Trends Ecol Evol. 1992 Jul;7(7):216-20. doi: 10.1016/0169-5347(92)90047-F.
8
Evaluating the life-history trade-off between dispersal capability and reproduction in wing dimorphic insects: a meta-analysis.
Biol Rev Camb Philos Soc. 2011 Nov;86(4):813-35. doi: 10.1111/j.1469-185X.2010.00172.x. Epub 2011 Jan 4.
9
Correlated evolution of female neoteny and flightlessness with male spermatophore production in fireflies (Coleoptera: Lampyridae).
Evolution. 2011 Apr;65(4):1099-113. doi: 10.1111/j.1558-5646.2010.01199.x. Epub 2010 Dec 22.
10
Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies.
Proc Biol Sci. 2010 Sep 22;277(1695):2839-48. doi: 10.1098/rspb.2010.0392. Epub 2010 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验