Suppr超能文献

神经关联的工具概率分布的发散。

Neural correlates of the divergence of instrumental probability distributions.

机构信息

Division of the Humanities and Social Sciences and Computation and Neural Systems Program, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

J Neurosci. 2013 Jul 24;33(30):12519-27. doi: 10.1523/JNEUROSCI.1353-13.2013.

Abstract

Flexible action selection requires knowledge about how alternative actions impact the environment: a "cognitive map" of instrumental contingencies. Reinforcement learning theories formalize this map as a set of stochastic relationships between actions and states, such that for any given action considered in a current state, a probability distribution is specified over possible outcome states. Here, we show that activity in the human inferior parietal lobule correlates with the divergence of such outcome distributions-a measure that reflects whether discrimination between alternative actions increases the controllability of the future-and, further, that this effect is dissociable from those of other information theoretic and motivational variables, such as outcome entropy, action values, and outcome utilities. Our results suggest that, although ultimately combined with reward estimates to generate action values, outcome probability distributions associated with alternative actions may be contrasted independently of valence computations, to narrow the scope of the action selection problem.

摘要

灵活的动作选择需要了解替代动作如何影响环境

一种工具性条件作用的“认知地图”。强化学习理论将该地图形式化为动作和状态之间的一组随机关系,使得对于当前状态下考虑的任何给定动作,都可以在可能的结果状态上指定概率分布。在这里,我们表明,人类下顶叶皮层的活动与这种结果分布的发散相关——这一衡量标准反映了在替代动作之间进行区分是否增加了未来的可控性——此外,这种效应与其他信息论和动机变量(例如结果熵、动作值和结果效用)的效应可分离。我们的结果表明,尽管最终与奖励估计相结合以产生动作值,但与替代动作相关的结果概率分布可能会独立于价值计算进行对比,以缩小动作选择问题的范围。

相似文献

1
Neural correlates of the divergence of instrumental probability distributions.
J Neurosci. 2013 Jul 24;33(30):12519-27. doi: 10.1523/JNEUROSCI.1353-13.2013.
2
Corticostriatal control of goal-directed action is impaired in schizophrenia.
Biol Psychiatry. 2015 Jan 15;77(2):187-95. doi: 10.1016/j.biopsych.2014.06.005. Epub 2014 Jun 17.
4
The Rostrolateral Prefrontal Cortex Mediates a Preference for High-Agency Environments.
J Neurosci. 2020 May 27;40(22):4401-4409. doi: 10.1523/JNEUROSCI.2463-19.2020. Epub 2020 Apr 23.
5
The involvement of model-based but not model-free learning signals during observational reward learning in the absence of choice.
J Neurophysiol. 2016 Jun 1;115(6):3195-203. doi: 10.1152/jn.00046.2016. Epub 2016 Apr 6.
6
Human reinforcement learning subdivides structured action spaces by learning effector-specific values.
J Neurosci. 2009 Oct 28;29(43):13524-31. doi: 10.1523/JNEUROSCI.2469-09.2009.
7
Primary and secondary rewards differentially modulate neural activity dynamics during working memory.
PLoS One. 2010 Feb 16;5(2):e9251. doi: 10.1371/journal.pone.0009251.
8
Unconscious determinants of free decisions in the human brain.
Nat Neurosci. 2008 May;11(5):543-5. doi: 10.1038/nn.2112. Epub 2008 Apr 13.
9
Instrumental learning of traits versus rewards: dissociable neural correlates and effects on choice.
Nat Neurosci. 2015 Sep;18(9):1233-5. doi: 10.1038/nn.4080. Epub 2015 Aug 3.

引用本文的文献

2
Contingency learning of social cues: neural engagement and emotional modulation by facial expressions.
Front Hum Neurosci. 2025 Feb 21;19:1527081. doi: 10.3389/fnhum.2025.1527081. eCollection 2025.
3
Obesity and Type 2 Diabetes Mellitus Explained by the Free Energy Principle.
Front Psychol. 2022 Jun 10;13:931701. doi: 10.3389/fpsyg.2022.931701. eCollection 2022.
4
How Stress Can Change Our Deepest Preferences: Stress Habituation Explained Using the Free Energy Principle.
Front Psychol. 2022 May 31;13:865203. doi: 10.3389/fpsyg.2022.865203. eCollection 2022.
5
A computational theory of the subjective experience of flow.
Nat Commun. 2022 Apr 26;13(1):2252. doi: 10.1038/s41467-022-29742-2.
6
Stress-sensitive inference of task controllability.
Nat Hum Behav. 2022 Jun;6(6):812-822. doi: 10.1038/s41562-022-01306-w. Epub 2022 Mar 10.
7
Cooperation and Social Rules Emerging From the Principle of Surprise Minimization.
Front Psychol. 2021 Jan 21;11:606174. doi: 10.3389/fpsyg.2020.606174. eCollection 2020.
8
Proactive engagement of cognitive control modulates implicit approach-avoidance bias.
Cogn Affect Behav Neurosci. 2020 Oct;20(5):998-1010. doi: 10.3758/s13415-020-00815-3.
9
Dark control: The default mode network as a reinforcement learning agent.
Hum Brain Mapp. 2020 Aug 15;41(12):3318-3341. doi: 10.1002/hbm.25019. Epub 2020 Jun 5.
10
The Rostrolateral Prefrontal Cortex Mediates a Preference for High-Agency Environments.
J Neurosci. 2020 May 27;40(22):4401-4409. doi: 10.1523/JNEUROSCI.2463-19.2020. Epub 2020 Apr 23.

本文引用的文献

1
Segregated encoding of reward-identity and stimulus-reward associations in human orbitofrontal cortex.
J Neurosci. 2013 Feb 13;33(7):3202-11. doi: 10.1523/JNEUROSCI.2532-12.2013.
2
In monkeys making value-based decisions, LIP neurons encode cue salience and not action value.
Science. 2012 Oct 5;338(6103):132-5. doi: 10.1126/science.1226405.
3
Dissociable brain systems mediate vicarious learning of stimulus-response and action-outcome contingencies.
J Neurosci. 2012 Jul 18;32(29):9878-86. doi: 10.1523/JNEUROSCI.0548-12.2012.
4
Neural mechanisms underlying motivation of mental versus physical effort.
PLoS Biol. 2012 Feb;10(2):e1001266. doi: 10.1371/journal.pbio.1001266. Epub 2012 Feb 21.
5
Deconstructing risk: separable encoding of variance and skewness in the brain.
Neuroimage. 2011 Oct 15;58(4):1139-49. doi: 10.1016/j.neuroimage.2011.06.087. Epub 2011 Jul 7.
7
Neural correlates of forward planning in a spatial decision task in humans.
J Neurosci. 2011 Apr 6;31(14):5526-39. doi: 10.1523/JNEUROSCI.4647-10.2011.
8
A pure salience response in posterior parietal cortex.
Cereb Cortex. 2011 Nov;21(11):2498-506. doi: 10.1093/cercor/bhr035. Epub 2011 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验