Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an 710071, China.
Neural Netw. 2013 Dec;48:8-18. doi: 10.1016/j.neunet.2013.06.013. Epub 2013 Jul 8.
In recent years, matrix rank minimization problems have aroused considerable interests from machine learning, data mining and computer vision communities. All of these problems can be solved via their convex relaxations which minimize the trace norm instead of the rank of the matrix, and have to be solved iteratively and involve singular value decomposition (SVD) at each iteration. Therefore, those algorithms for trace norm minimization problems suffer from high computation cost of multiple SVDs. In this paper, we propose an efficient Matrix Bi-Factorization (MBF) method to approximate the original trace norm minimization problem and mitigate the computation cost of performing SVDs. The proposed MBF method can be used to address a wide range of low-rank matrix recovery and completion problems such as low-rank and sparse matrix decomposition (LRSD), low-rank representation (LRR) and low-rank matrix completion (MC). We also present three small scale matrix trace norm models for LRSD, LRR and MC problems, respectively. Moreover, we develop two concrete linearized proximal alternative optimization algorithms for solving the above three problems. Experimental results on a variety of synthetic and real-world data sets validate the efficiency, robustness and effectiveness of our MBF method comparing with the state-of-the-art trace norm minimization algorithms.
近年来,矩阵秩最小化问题已经引起了机器学习、数据挖掘和计算机视觉领域的广泛关注。所有这些问题都可以通过它们的凸松弛来解决,而不是最小化矩阵的秩,并且必须通过迭代来解决,并且在每次迭代中都涉及奇异值分解 (SVD)。因此,那些用于迹范数最小化问题的算法在多次 SVD 方面存在很高的计算成本。在本文中,我们提出了一种有效的矩阵双因子分解 (MBF) 方法来近似原始的迹范数最小化问题,并减轻执行 SVD 的计算成本。所提出的 MBF 方法可用于解决广泛的低秩矩阵恢复和完成问题,例如低秩和稀疏矩阵分解 (LRSD)、低秩表示 (LRR) 和低秩矩阵完成 (MC)。我们还分别为 LRSD、LRR 和 MC 问题提出了三个小规模矩阵迹范数模型。此外,我们为解决上述三个问题开发了两种具体的线性化近端交替优化算法。在各种合成和真实数据集上的实验结果验证了我们的 MBF 方法与最先进的迹范数最小化算法相比的效率、鲁棒性和有效性。