Suppr超能文献

基于加速低秩表示的大规模数据子空间聚类与半监督分类。

Accelerated low-rank representation for subspace clustering and semi-supervised classification on large-scale data.

机构信息

Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.

School of Information Science and Technology, Donghua University, Shanghai, PR China.

出版信息

Neural Netw. 2018 Apr;100:39-48. doi: 10.1016/j.neunet.2018.01.014. Epub 2018 Feb 2.

Abstract

The scalability of low-rank representation (LRR) to large-scale data is still a major research issue, because it is extremely time-consuming to solve singular value decomposition (SVD) in each optimization iteration especially for large matrices. Several methods were proposed to speed up LRR, but they are still computationally heavy, and the overall representation results were also found degenerated. In this paper, a novel method, called accelerated LRR (ALRR) is proposed for large-scale data. The proposed accelerated method integrates matrix factorization with nuclear-norm minimization to find a low-rank representation. In our proposed method, the large square matrix of representation coefficients is transformed into a significantly smaller square matrix, on which SVD can be efficiently implemented. The size of the transformed matrix is not related to the number of data points and the optimization of ALRR is linear with the number of data points. The proposed ALRR is convex, accurate, robust, and efficient for large-scale data. In this paper, ALRR is compared with state-of-the-art in subspace clustering and semi-supervised classification on real image datasets. The obtained results verify the effectiveness and superiority of the proposed ALRR method.

摘要

低秩表示(LRR)的可扩展性对于大规模数据仍然是一个主要的研究问题,因为在每个优化迭代中求解奇异值分解(SVD)非常耗时,特别是对于大型矩阵。已经提出了几种加速 LRR 的方法,但它们仍然计算量很大,并且整体表示结果也发现退化了。在本文中,提出了一种称为加速 LRR(ALRR)的新方法,用于处理大规模数据。所提出的加速方法将矩阵分解与核范数最小化相结合,以找到低秩表示。在我们提出的方法中,将表示系数的大型方阵转换为小得多的方阵,在该方阵上可以有效地执行 SVD。转换矩阵的大小与数据点的数量无关,并且 ALRR 的优化与数据点的数量呈线性关系。对于大规模数据,所提出的 ALRR 是凸的、准确的、鲁棒的和高效的。在本文中,将 ALRR 与子空间聚类和半监督分类的最新技术在真实图像数据集上进行了比较。所得到的结果验证了所提出的 ALRR 方法的有效性和优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验