Suppr超能文献

尾部化人诱导多能干细胞源性神经祖细胞可产生神经元和神经胶质细胞,但未能恢复早期慢性脊髓损伤模型的功能。

Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model.

机构信息

Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.

出版信息

Exp Neurol. 2013 Oct;248:491-503. doi: 10.1016/j.expneurol.2013.07.010. Epub 2013 Jul 25.

Abstract

Neural progenitor cells (NPCs) have shown modest potential and some side effects (e.g. allodynia) for treatment of spinal cord injury (SCI). In only a few cases, however, have NPCs shown promise at the chronic stage. Given the 1.275 million people living with chronic paralysis, there is a significant need to rigorously evaluate the cell types and methods for safe and efficacious treatment of this devastating condition. For the first time, we examined the pre-clinical potential of NPCs derived from human induced pluripotent stem cells (hiPSCs) to repair chronic SCI. hiPSCs were differentiated into region-specific (i.e. caudal) NPCs, then transplanted into a new, clinically relevant model of early chronic cervical SCI. We established the conditions for successful transplantation of caudalized hiPSC-NPCs and demonstrate their remarkable ability to integrate and produce multiple neural lineages in the early chronic injury environment. In contrast to prior reports in acute and sub-acute injury models, survival and integration of hiPSC-derived neural cells in the early chronic cervical model did not lead to significant improvement in forelimb function or induce allodynia. These data indicate that while hiPSCs show promise, future work needs to focus on the specific hiPSC-derivatives or co-therapies that will restore function in the early chronic injury setting.

摘要

神经祖细胞(NPC)在治疗脊髓损伤(SCI)方面显示出一定的潜力和一些副作用(例如感觉异常痛)。然而,在慢性阶段,NPC 仅在少数情况下显示出希望。考虑到有 127.5 万人患有慢性瘫痪,因此迫切需要严格评估细胞类型和方法,以安全有效地治疗这种毁灭性疾病。我们首次研究了源自人诱导多能干细胞(hiPSC)的 NPC 在修复慢性 SCI 方面的临床前潜力。将 hiPSC 分化为区域特异性(即尾侧)NPC,然后将其移植到新的、具有临床相关性的早期慢性颈 SCI 模型中。我们建立了成功移植尾侧化 hiPSC-NPC 的条件,并证明了它们在早期慢性损伤环境中整合和产生多种神经谱系的非凡能力。与急性和亚急性损伤模型中的先前报告相反,在早期慢性颈模型中,hiPSC 衍生的神经细胞的存活和整合并没有导致前肢功能的显著改善,也没有引起感觉异常痛。这些数据表明,虽然 hiPSC 显示出希望,但未来的工作需要集中在特定的 hiPSC 衍生物或联合疗法上,以恢复早期慢性损伤环境中的功能。

相似文献

3
Human neural progenitors derived from integration-free iPSCs for SCI therapy.
Stem Cell Res. 2017 Mar;19:55-64. doi: 10.1016/j.scr.2017.01.004. Epub 2017 Jan 5.
4
Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury.
J Neurotrauma. 2007 May;24(5):835-45. doi: 10.1089/neu.2006.3771.
5
Transplantation of human urine-derived neural progenitor cells after spinal cord injury in rats.
Neurosci Lett. 2020 Sep 14;735:135201. doi: 10.1016/j.neulet.2020.135201. Epub 2020 Jun 23.
9
hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice.
Stem Cell Res Ther. 2021 Mar 11;12(1):172. doi: 10.1186/s13287-021-02217-9.

引用本文的文献

2
The combined application of stem cells and three-dimensional bioprinting scaffolds for the repair of spinal cord injury.
Neural Regen Res. 2024 Aug 1;19(8):1751-1758. doi: 10.4103/1673-5374.385842. Epub 2023 Sep 22.
3
Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury.
Bioeng Transl Med. 2022 Aug 31;8(2):e10389. doi: 10.1002/btm2.10389. eCollection 2023 Mar.
4
Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury.
Int J Mol Sci. 2023 Feb 14;24(4):3824. doi: 10.3390/ijms24043824.
6
Prospect of Stem Cells as Promising Therapy for Brachial Plexus Injury: A Systematic Review.
Stem Cells Cloning. 2022 Jun 22;15:29-42. doi: 10.2147/SCCAA.S363415. eCollection 2022.
9
Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model.
Biomedicines. 2022 Feb 1;10(2):350. doi: 10.3390/biomedicines10020350.
10
Current Concepts of Neural Stem/Progenitor Cell Therapy for Chronic Spinal Cord Injury.
Front Cell Neurosci. 2022 Feb 3;15:794692. doi: 10.3389/fncel.2021.794692. eCollection 2021.

本文引用的文献

1
Long-distance growth and connectivity of neural stem cells after severe spinal cord injury.
Cell. 2012 Sep 14;150(6):1264-73. doi: 10.1016/j.cell.2012.08.020.
2
Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis.
Neuron. 2012 Apr 12;74(1):79-94. doi: 10.1016/j.neuron.2012.01.024.
3
Axonal thinning and extensive remyelination without chronic demyelination in spinal injured rats.
J Neurosci. 2012 Apr 11;32(15):5120-5. doi: 10.1523/JNEUROSCI.0002-12.2012.
5
Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model.
J Stroke Cerebrovasc Dis. 2013 May;22(4):304-8. doi: 10.1016/j.jstrokecerebrovasdis.2011.09.008. Epub 2011 Nov 10.
6
Cellular treatments for spinal cord injury: the time is right for clinical trials.
Neurotherapeutics. 2011 Oct;8(4):704-20. doi: 10.1007/s13311-011-0076-7.
7
Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice.
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16825-30. doi: 10.1073/pnas.1108077108. Epub 2011 Sep 26.
8
High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury.
J Neural Eng. 2011 Aug;8(4):046033. doi: 10.1088/1741-2560/8/4/046033. Epub 2011 Jul 14.
9
Specification of transplantable astroglial subtypes from human pluripotent stem cells.
Nat Biotechnol. 2011 May 22;29(6):528-34. doi: 10.1038/nbt.1877.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验