Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
J Clin Invest. 2011 Jun;121(6):2326-35. doi: 10.1172/JCI45794. Epub 2011 May 16.
Parkinson disease (PD) involves the selective loss of midbrain dopamine (mDA) neurons and is a possible target disease for stem cell-based therapy. Human induced pluripotent stem cells (hiPSCs) are a potentially unlimited source of patient-specific cells for transplantation. However, it is critical to evaluate the safety of hiPSCs generated by different reprogramming methods. Here, we compared multiple hiPSC lines derived by virus- and protein-based reprogramming to human ES cells (hESCs). Neuronal precursor cells (NPCs) and dopamine (DA) neurons delivered from lentivirus-based hiPSCs exhibited residual expression of exogenous reprogramming genes, but those cells derived from retrovirus- and protein-based hiPSCs did not. Furthermore, NPCs derived from virus-based hiPSCs exhibited early senescence and apoptotic cell death during passaging, which was preceded by abrupt induction of p53. In contrast, NPCs derived from hESCs and protein-based hiPSCs were highly expandable without senescence. DA neurons derived from protein-based hiPSCs exhibited gene expression, physiological, and electrophysiological properties similar to those of mDA neurons. Transplantation of these cells into rats with striatal lesions, a model of PD, significantly rescued motor deficits. These data support the clinical potential of protein-based hiPSCs for personalized cell therapy of PD.
帕金森病(PD)涉及中脑多巴胺(mDA)神经元的选择性丧失,是干细胞为基础的治疗的可能靶疾病。人诱导多能干细胞(hiPSCs)是用于移植的患者特异性细胞的潜在无限来源。然而,评估不同重编程方法产生的 hiPSCs 的安全性至关重要。在这里,我们比较了基于病毒和基于蛋白的重编程产生的多个 hiPSC 系与人类胚胎干细胞(hESCs)。来自慢病毒的 hiPSC 衍生的神经前体细胞(NPCs)和多巴胺(DA)神经元表现出外源性重编程基因的残留表达,但来自逆转录病毒和基于蛋白的 hiPSC 的那些细胞没有。此外,来自病毒的 hiPSC 衍生的 NPCs 在传代过程中表现出早期衰老和凋亡性细胞死亡,这之前是 p53 的突然诱导。相比之下,来自 hESCs 和基于蛋白的 hiPSCs 的 NPCs 具有高度的扩展性,没有衰老。来自基于蛋白的 hiPSCs 的 DA 神经元表现出与 mDA 神经元相似的基因表达、生理和电生理特性。将这些细胞移植到纹状体损伤的大鼠(PD 模型)中,显著挽救了运动缺陷。这些数据支持基于蛋白的 hiPSCs 用于 PD 的个性化细胞治疗的临床潜力。