D'Elía Noelia L, Gravina A Noel, Ruso Juan M, Laiuppa Juan A, Santillán Graciela E, Messina Paula V
Department of Chemistry, Universidad Nacional del Sur, INQUISUR-CONICET, (8000) Bahía Blanca, Argentina.
Biochim Biophys Acta. 2013 Nov;1830(11):5014-26. doi: 10.1016/j.bbagen.2013.07.020. Epub 2013 Jul 25.
Nano-hydroxyapatite particles have better bioactivity than the coarse crystals. So, they can be utilized for engineered tissue implants with improved efficiency over other materials. The development of materials with specific bioactive characteristics is still under investigation.
The surface properties of four hydroxyapatite materials templated by different micelle-polymer structured network are studied. The synergistic interaction of each block copolymer in contact with CTAB rod-like micelles results in crystalline HAp nano-rods of 25-50nm length organized in hierarchical structures with different micro-rough characteristics.
It was observed that the material in vitro bioactivity strongly depends on the surface structure while in a minor extent on their Ca/P ratio. So, MIII and MIV materials with Skewness parameter Rsk>2.62 favored the formation on their surfaces of net-like phase with a high growth kinetic constant; while MI and MII (Rsk≤2.62) induced the appearance of spherulitic-like structures and a growth rate 1.75 times inferior. Material biocompatibility was confirmed by interaction with rat calvarial osteoblasts.
The different structures growth is attributed to a dissimilar matching of crystal planes in the material and the apatite layer formed. In specific synthesis conditions, a biocompatible material with a Ca/P ratio close to that for the trabecular bone and a morphology that are considered essential for bone-bonding was obtained.
The creation of implantable devices with a specific bioactive characteristic may be useful to manipulate the attachment of cells on mineral coating directly affecting the stability and life of the implant.
纳米羟基磷灰石颗粒比粗晶具有更好的生物活性。因此,与其他材料相比,它们可用于工程组织植入物,提高效率。具有特定生物活性特征的材料的开发仍在研究中。
研究了由不同胶束 - 聚合物结构网络模板化的四种羟基磷灰石材料的表面性质。每种嵌段共聚物与CTAB棒状胶束接触时的协同相互作用导致形成长度为25 - 50nm的结晶HAp纳米棒,这些纳米棒以具有不同微粗糙特征的分级结构排列。
观察到材料的体外生物活性在很大程度上取决于表面结构,而在较小程度上取决于其钙磷比。因此,偏度参数Rsk>2.62的MIII和MIV材料有利于在其表面形成具有高生长动力学常数的网状相;而MI和MII(Rsk≤2.62)诱导出现球晶状结构,生长速率低1.75倍。通过与大鼠颅骨成骨细胞的相互作用证实了材料的生物相容性。
不同结构的生长归因于材料中晶面与形成的磷灰石层的不同匹配。在特定的合成条件下,获得了一种生物相容性材料,其钙磷比接近小梁骨,并且具有被认为对骨结合至关重要的形态。
创建具有特定生物活性特征的可植入装置可能有助于操纵细胞在矿物涂层上的附着,直接影响植入物的稳定性和寿命。