Suppr超能文献

组蛋白 H3 的不同氨基酸控制 Aspergillus nidulans 的次级代谢。

Distinct amino acids of histone H3 control secondary metabolism in Aspergillus nidulans.

机构信息

Department of Molecular and Applied Microbiology.

出版信息

Appl Environ Microbiol. 2013 Oct;79(19):6102-9. doi: 10.1128/AEM.01578-13. Epub 2013 Jul 26.

Abstract

Chromatin remodelling events play an important role in the secondary metabolism of filamentous fungi. Previously, we showed that a bacterium, Streptomyces rapamycinicus, is able to reprogram the histone-modifying Spt-Ada-Gcn5-acetyltransferase/ADA (SAGA/ADA) complex of the model fungus Aspergillus nidulans. Consequently, the histone H3 amino acids lysine 9 and lysine 14 at distinct secondary metabolism genes were specifically acetylated during the bacterial fungal interaction, which, furthermore, was associated with the activation of the otherwise silent orsellinic acid gene cluster. To investigate the importance of the histone modifications for distinct gene expression profiles in fungal secondary metabolism, we exchanged several amino acids of histone H3 of A. nidulans. These amino acids included lysine residues 9, 14, 18, and 23 as well as serine 10 and threonine 11. Lysine residues were replaced by arginine or glutamine residues, and serine/threonine residues were replaced by alanine. All generated mutant strains were viable, allowing direct analysis of the consequences of missing posttranslational histone modifications. In the mutant strains, major changes in the expression patterns at both the transcriptional and metabolite levels of the penicillin, sterigmatocystin, and orsellinic acid biosynthesis gene clusters were detected. These effects were due mainly to the substitution of the acetylatable lysine 14 of histone H3 and were enhanced in a lysine 14/lysine 9 double mutant of histone H3. Taken together, our findings show a causal linkage between the acetylation of lysine residue 14 of histone H3 and the transcription and product formation of secondary metabolite gene clusters.

摘要

染色质重塑事件在丝状真菌的次生代谢中起着重要作用。此前,我们表明,一种细菌,即瑞斯托菌素链霉菌(Streptomyces rapamycinicus),能够重新编程模式真菌构巢曲霉(Aspergillus nidulans)中的组蛋白修饰 Spt-Ada-Gcn5-乙酰转移酶/ADA(SAGA/ADA)复合物。因此,在细菌与真菌相互作用过程中,特定的次级代谢基因的组蛋白 H3 赖氨酸 9 和赖氨酸 14 被特异性乙酰化,这进一步与否则沉默的奥尔西诺酸基因簇的激活相关。为了研究组蛋白修饰在真菌次生代谢中不同基因表达谱中的重要性,我们交换了构巢曲霉的组蛋白 H3 的几个氨基酸。这些氨基酸包括赖氨酸残基 9、14、18 和 23 以及丝氨酸 10 和苏氨酸 11。赖氨酸残基被精氨酸或谷氨酰胺残基取代,丝氨酸/苏氨酸残基被丙氨酸取代。所有生成的突变株都是可行的,允许直接分析缺失翻译后组蛋白修饰的后果。在突变株中,青霉素、麦角甾酮和奥尔西诺酸生物合成基因簇的转录和代谢物水平的表达模式都发生了重大变化。这些影响主要归因于组蛋白 H3 上可乙酰化的赖氨酸 14 的取代,并且在组蛋白 H3 的赖氨酸 14/赖氨酸 9 双突变体中增强。总之,我们的发现表明组蛋白 H3 赖氨酸 14 的乙酰化与次生代谢物基因簇的转录和产物形成之间存在因果关系。

相似文献

1
Distinct amino acids of histone H3 control secondary metabolism in Aspergillus nidulans.
Appl Environ Microbiol. 2013 Oct;79(19):6102-9. doi: 10.1128/AEM.01578-13. Epub 2013 Jul 26.
2
Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14282-7. doi: 10.1073/pnas.1103523108. Epub 2011 Aug 8.
5
Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans.
Mol Microbiol. 2010 Jun;76(6):1376-86. doi: 10.1111/j.1365-2958.2010.07051.x. Epub 2010 Feb 1.
6
Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production.
Mol Microbiol. 2012 Oct;86(2):314-30. doi: 10.1111/j.1365-2958.2012.08195.x. Epub 2012 Aug 27.
8
The putative CH transcription factor RocA is a novel regulator of development and secondary metabolism in Aspergillus nidulans.
J Microbiol. 2020 Jul;58(7):574-587. doi: 10.1007/s12275-020-0083-7. Epub 2020 Apr 22.
9
Diversity of Secondary Metabolism in Aspergillus nidulans Clinical Isolates.
mSphere. 2020 Apr 8;5(2):e00156-20. doi: 10.1128/mSphere.00156-20.
10
Sirtuin A regulates secondary metabolite production by Aspergillus nidulans.
J Gen Appl Microbiol. 2017 Sep 5;63(4):228-235. doi: 10.2323/jgam.2016.11.002. Epub 2017 Jul 1.

引用本文的文献

1
The regulatory network of transcription factor Skn7 collaborates with bHLH1 during fungal-fungal interactions.
Microbiol Spectr. 2025 Sep 2;13(9):e0048425. doi: 10.1128/spectrum.00484-25. Epub 2025 Jul 30.
4
The MYST Family Histone Acetyltransferase SasC Governs Diverse Biological Processes in .
Cells. 2023 Nov 16;12(22):2642. doi: 10.3390/cells12222642.
6
Functional Characterization of the GNAT Family Histone Acetyltransferase Elp3 and GcnE in .
Int J Mol Sci. 2023 Jan 22;24(3):2179. doi: 10.3390/ijms24032179.
7
Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability.
Mater Today Bio. 2023 Jan 21;19:100560. doi: 10.1016/j.mtbio.2023.100560. eCollection 2023 Apr.
8
Diversity: Species, Dispositions, Secondary Metabolites, and Bioactivities.
Molecules. 2022 Nov 21;27(22):8088. doi: 10.3390/molecules27228088.
9
Histone Acetyltransferase CfGcn5-Mediated Autophagy Governs the Pathogenicity of .
mBio. 2022 Oct 26;13(5):e0195622. doi: 10.1128/mbio.01956-22. Epub 2022 Aug 17.
10
Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review.
Environ Microbiol. 2022 Jul;24(7):2857-2881. doi: 10.1111/1462-2920.16034. Epub 2022 May 30.

本文引用的文献

1
A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb.
Science. 2013 Feb 8;339(6120):698-9. doi: 10.1126/science.1231382.
2
Regulation of fungal secondary metabolism.
Nat Rev Microbiol. 2013 Jan;11(1):21-32. doi: 10.1038/nrmicro2916. Epub 2012 Nov 26.
3
Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18505-10. doi: 10.1073/pnas.1202070109. Epub 2012 Oct 22.
4
Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production.
Mol Microbiol. 2012 Oct;86(2):314-30. doi: 10.1111/j.1365-2958.2012.08195.x. Epub 2012 Aug 27.
5
The chromatin code of fungal secondary metabolite gene clusters.
Appl Microbiol Biotechnol. 2012 Sep;95(6):1389-404. doi: 10.1007/s00253-012-4208-8. Epub 2012 Jul 20.
6
Substitutions in the amino-terminal tail of neurospora histone H3 have varied effects on DNA methylation.
PLoS Genet. 2011 Dec;7(12):e1002423. doi: 10.1371/journal.pgen.1002423. Epub 2011 Dec 29.
7
Cytotoxic pheofungins from an engineered fungus impaired in posttranslational protein modification.
Angew Chem Int Ed Engl. 2011 Oct 10;50(42):9843-7. doi: 10.1002/anie.201104488. Epub 2011 Sep 12.
8
Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14282-7. doi: 10.1073/pnas.1103523108. Epub 2011 Aug 8.
9
Transcriptional regulatory elements in fungal secondary metabolism.
J Microbiol. 2011 Jun;49(3):329-39. doi: 10.1007/s12275-011-1009-1. Epub 2011 Jun 30.
10
Regulation of chromatin by histone modifications.
Cell Res. 2011 Mar;21(3):381-95. doi: 10.1038/cr.2011.22. Epub 2011 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验