Suppr超能文献

α-D-磷酸己糖变位酶超家族中酶的生物学、作用机制及结构

Biology, Mechanism, and Structure of Enzymes in the α-d-Phosphohexomutase Superfamily.

作者信息

Stiers Kyle M, Muenks Andrew G, Beamer Lesa J

机构信息

University of Missouri, Columbia, MO, United States.

University of Missouri, Columbia, MO, United States.

出版信息

Adv Protein Chem Struct Biol. 2017;109:265-304. doi: 10.1016/bs.apcsb.2017.04.005. Epub 2017 May 17.

Abstract

Enzymes in the α-d-phosphohexomutases superfamily catalyze the reversible conversion of phosphosugars, such as glucose 1-phosphate and glucose 6-phosphate. These reactions are fundamental to primary metabolism across the kingdoms of life and are required for a myriad of cellular processes, ranging from exopolysaccharide production to protein glycosylation. The subject of extensive mechanistic characterization during the latter half of the 20th century, these enzymes have recently benefitted from biophysical characterization, including X-ray crystallography, NMR, and hydrogen-deuterium exchange studies. This work has provided new insights into the unique catalytic mechanism of the superfamily, shed light on the molecular determinants of ligand recognition, and revealed the evolutionary conservation of conformational flexibility. Novel associations with inherited metabolic disease and the pathogenesis of bacterial infections have emerged, spurring renewed interest in the long-appreciated functional roles of these enzymes.

摘要

α -d-磷酸己糖变位酶超家族中的酶催化磷酸糖(如1-磷酸葡萄糖和6-磷酸葡萄糖)的可逆转化。这些反应是生命各王国初级代谢的基础,也是从胞外多糖产生到蛋白质糖基化等无数细胞过程所必需的。在20世纪后半叶,这些酶是广泛的机制表征的对象,最近它们受益于生物物理表征,包括X射线晶体学、核磁共振和氢-氘交换研究。这项工作为超家族独特的催化机制提供了新的见解,阐明了配体识别的分子决定因素,并揭示了构象灵活性的进化保守性。与遗传性代谢疾病和细菌感染发病机制的新关联已经出现,激发了人们对这些酶长期以来备受重视的功能作用的新兴趣。

相似文献

1
Biology, Mechanism, and Structure of Enzymes in the α-d-Phosphohexomutase Superfamily.
Adv Protein Chem Struct Biol. 2017;109:265-304. doi: 10.1016/bs.apcsb.2017.04.005. Epub 2017 May 17.
2
Identification of an essential active-site residue in the α-D-phosphohexomutase enzyme superfamily.
FEBS J. 2013 Jun;280(11):2622-32. doi: 10.1111/febs.12249. Epub 2013 Apr 8.
3
Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis.
Biochemistry. 2005 Jul 12;44(27):9404-16. doi: 10.1021/bi050558p.
4
Assessment and Impacts of Phosphorylation on Protein Flexibility of the α-d-Phosphohexomutases.
Methods Enzymol. 2018;607:241-267. doi: 10.1016/bs.mie.2018.04.003.
6
α-Fluorophosphonates reveal how a phosphomutase conserves transition state conformation over hexose recognition in its two-step reaction.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12384-9. doi: 10.1073/pnas.1402850111. Epub 2014 Aug 7.
8
Mechanism of Substrate Recognition and Catalysis of the Haloalkanoic Acid Dehalogenase Family Member α-Phosphoglucomutase.
Biochemistry. 2018 Jul 31;57(30):4504-4517. doi: 10.1021/acs.biochem.8b00396. Epub 2018 Jul 13.
9
Promotion of enzyme flexibility by dephosphorylation and coupling to the catalytic mechanism of a phosphohexomutase.
J Biol Chem. 2014 Feb 21;289(8):4674-82. doi: 10.1074/jbc.M113.532226. Epub 2014 Jan 8.
10
High-resolution structure of an atypical α-phosphoglucomutase related to eukaryotic phosphomannomutases.
Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):2008-16. doi: 10.1107/S0907444913017046. Epub 2013 Sep 20.

引用本文的文献

3
Role of AlgC and GalU in the Intrinsic Antibiotic Resistance of .
Infect Drug Resist. 2023 Mar 29;16:1839-1847. doi: 10.2147/IDR.S403046. eCollection 2023.
4
Phosphoglucomutase comes into the spotlight.
J Exp Bot. 2023 Mar 13;74(5):1293-1296. doi: 10.1093/jxb/erac513.
5
Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics.
Crit Rev Biochem Mol Biol. 2022 Oct-Dec;57(5-6):562-584. doi: 10.1080/10409238.2023.2182272. Epub 2023 Mar 3.
6
Meta-analysis of the effect of PGM on survival prognosis of tumor patients.
Front Oncol. 2022 Dec 5;12:1060372. doi: 10.3389/fonc.2022.1060372. eCollection 2022.
10
Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR.
mSystems. 2022 Oct 26;7(5):e0034322. doi: 10.1128/msystems.00343-22. Epub 2022 Sep 12.

本文引用的文献

1
Phosphorylation-Dependent Effects on the Structural Flexibility of Phosphoglucosamine Mutase from .
ACS Omega. 2017 Nov 29;2(11):8445-8452. doi: 10.1021/acsomega.7b01490. eCollection 2017 Nov 30.
3
Data on the phosphorylation state of the catalytic serine of enzymes in the α-D-phosphohexomutase superfamily.
Data Brief. 2016 Dec 15;10:398-405. doi: 10.1016/j.dib.2016.12.017. eCollection 2017 Feb.
5
Antibiotic Adjuvants: Rescuing Antibiotics from Resistance.
Trends Microbiol. 2016 Nov;24(11):862-871. doi: 10.1016/j.tim.2016.06.009. Epub 2016 Jul 15.
6
Metabolic Engineering of Fusarium oxysporum to Improve Its Ethanol-Producing Capability.
Front Microbiol. 2016 May 4;7:632. doi: 10.3389/fmicb.2016.00632. eCollection 2016.
7
Induced Structural Disorder as a Molecular Mechanism for Enzyme Dysfunction in Phosphoglucomutase 1 Deficiency.
J Mol Biol. 2016 Apr 24;428(8):1493-505. doi: 10.1016/j.jmb.2016.02.032. Epub 2016 Mar 10.
8
Delta-pgm, a new live-attenuated vaccine against Brucella suis.
Vaccine. 2016 Mar 18;34(13):1524-1530. doi: 10.1016/j.vaccine.2016.02.025. Epub 2016 Feb 17.
9
Genetic defects in the hexosamine and sialic acid biosynthesis pathway.
Biochim Biophys Acta. 2016 Aug;1860(8):1640-54. doi: 10.1016/j.bbagen.2015.12.017. Epub 2015 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验