Suppr超能文献

人源Drosha和DGCR8与初级微小RNA复合物的冷冻电镜结构

Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA.

作者信息

Partin Alexander C, Zhang Kaiming, Jeong Byung-Cheon, Herrell Emily, Li Shanshan, Chiu Wah, Nam Yunsun

机构信息

Laboratory of RNA Biology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Departments of Biophysics and Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA.

出版信息

Mol Cell. 2020 May 7;78(3):411-422.e4. doi: 10.1016/j.molcel.2020.02.016. Epub 2020 Mar 27.

Abstract

Metazoan microRNAs require specific maturation steps initiated by Microprocessor, comprising Drosha and DGCR8. Lack of structural information for the assembled complex has hindered an understanding of how Microprocessor recognizes primary microRNA transcripts (pri-miRNAs). Here we present a cryoelectron microscopy structure of human Microprocessor with a pri-miRNA docked in the active site, poised for cleavage. The basal junction is recognized by a four-way intramolecular junction in Drosha, triggered by the Belt and Wedge regions that clamp over the ssRNA. The belt is important for efficiency and accuracy of pri-miRNA processing. Two dsRBDs form a molecular ruler to measure the stem length between the two dsRNA-ssRNA junctions. The specific organization of the dsRBDs near the apical junction is independent of Drosha core domains, as observed in a second structure in the partially docked state. Collectively, we derive a molecular model to explain how Microprocessor recognizes a pri-miRNA and accurately identifies the cleavage site.

摘要

后生动物的微小RNA需要由微处理器启动特定的成熟步骤,微处理器由Drosha和DGCR8组成。缺乏组装复合物的结构信息阻碍了人们对微处理器如何识别初级微小RNA转录本(pri-miRNA)的理解。在此,我们展示了人类微处理器与对接在活性位点、准备进行切割的pri-miRNA的冷冻电镜结构。基部连接由Drosha中的一个四向分子内连接识别,该连接由夹在单链RNA上的带和楔区域触发。带对于pri-miRNA加工的效率和准确性很重要。两个双链RNA结合结构域(dsRBD)形成一个分子尺来测量两个双链RNA-单链RNA连接之间的茎长度。如在部分对接状态下的第二个结构中所观察到的,顶端连接附近dsRBD的特定组织独立于Drosha核心结构域。我们共同推导了一个分子模型来解释微处理器如何识别pri-miRNA并准确识别切割位点。

相似文献

2
Structural Basis for pri-miRNA Recognition by Drosha.Drosha识别初级微小RNA(pri-miRNA)的结构基础
Mol Cell. 2020 May 7;78(3):423-433.e5. doi: 10.1016/j.molcel.2020.02.024. Epub 2020 Mar 27.
3
Functional Anatomy of the Human Microprocessor.人类微处理器的功能解剖学
Cell. 2015 Jun 4;161(6):1374-87. doi: 10.1016/j.cell.2015.05.010. Epub 2015 May 28.

引用本文的文献

3
Plant microRNA maturation and function.植物微小RNA的成熟与功能。
Nat Rev Mol Cell Biol. 2025 Jul 18. doi: 10.1038/s41580-025-00871-y.

本文引用的文献

8
Structure of Human DROSHA.人 DROSHA 的结构。
Cell. 2016 Jan 14;164(1-2):81-90. doi: 10.1016/j.cell.2015.12.019. Epub 2015 Dec 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验