Suppr超能文献

着丝粒染色质的结构完整性和忠实的染色体分离需要 Pat1。

Structural integrity of centromeric chromatin and faithful chromosome segregation requires Pat1.

机构信息

Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

出版信息

Genetics. 2013 Oct;195(2):369-79. doi: 10.1534/genetics.113.155291. Epub 2013 Jul 26.

Abstract

The kinetochore (centromeric DNA and associated protein complex) is essential for faithful chromosome segregation and maintenance of genome stability. Here we report that an evolutionarily conserved protein Pat1 is a structural component of Saccharomyces cerevisiae kinetochore and associates with centromeres in a NDC10-dependent manner. Consistent with a role for Pat1 in kinetochore structure and function, a deletion of PAT1 results in delay in sister chromatid separation, errors in chromosome segregation, and defects in structural integrity of centromeric chromatin. Pat1 is involved in topological regulation of minichromosomes as altered patterns of DNA supercoiling were observed in pat1Δ cells. Studies with pat1 alleles uncovered an evolutionarily conserved region within the central domain of Pat1 that is required for its association with centromeres, sister chromatid separation, and faithful chromosome segregation. Taken together, our data have uncovered a novel role for Pat1 in maintaining the structural integrity of centromeric chromatin to facilitate faithful chromosome segregation and proper kinetochore function.

摘要

着丝粒(着丝粒 DNA 和相关蛋白复合物)对于忠实的染色体分离和基因组稳定性的维持至关重要。在这里,我们报告说,一种进化上保守的蛋白质 Pat1 是酿酒酵母着丝粒的结构组成部分,并以 NDC10 依赖性的方式与着丝粒结合。与 Pat1 在着丝粒结构和功能中的作用一致,PAT1 的缺失导致姐妹染色单体分离延迟、染色体分离错误以及着丝粒染色质结构完整性缺陷。Pat1 参与了小型染色体的拓扑调控,因为在 pat1Δ 细胞中观察到 DNA 超螺旋模式的改变。对 pat1 等位基因的研究揭示了 Pat1 中心结构域内的一个进化上保守区域,该区域对于其与着丝粒、姐妹染色单体分离和忠实染色体分离的关联是必需的。总之,我们的数据揭示了 Pat1 在维持着丝粒染色质结构完整性以促进忠实染色体分离和适当的着丝粒功能方面的新作用。

相似文献

1
Structural integrity of centromeric chromatin and faithful chromosome segregation requires Pat1.
Genetics. 2013 Oct;195(2):369-79. doi: 10.1534/genetics.113.155291. Epub 2013 Jul 26.
2
Pat1 protects centromere-specific histone H3 variant Cse4 from Psh1-mediated ubiquitination.
Mol Biol Cell. 2015 Jun 1;26(11):2067-79. doi: 10.1091/mbc.E14-08-1335. Epub 2015 Apr 1.
3
Misregulation of Scm3p/HJURP causes chromosome instability in Saccharomyces cerevisiae and human cells.
PLoS Genet. 2011 Sep;7(9):e1002303. doi: 10.1371/journal.pgen.1002303. Epub 2011 Sep 29.
4
Kinetochore function and chromosome segregation rely on critical residues in histones H3 and H4 in budding yeast.
Genetics. 2013 Nov;195(3):795-807. doi: 10.1534/genetics.113.152082. Epub 2013 Sep 13.
5
Insights into assembly and regulation of centromeric chromatin in Saccharomyces cerevisiae.
Biochim Biophys Acta. 2012 Jul;1819(7):776-83. doi: 10.1016/j.bbagrm.2012.02.008. Epub 2012 Feb 16.
7
Functional roles for evolutionarily conserved Spt4p at centromeres and heterochromatin in Saccharomyces cerevisiae.
EMBO J. 2004 Apr 21;23(8):1804-14. doi: 10.1038/sj.emboj.7600161. Epub 2004 Apr 1.
8
The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation.
Mol Cell Biol. 2003 May;23(9):3202-15. doi: 10.1128/MCB.23.9.3202-3215.2003.
9
Phosphorylation of centromeric histone H3 variant regulates chromosome segregation in Saccharomyces cerevisiae.
Mol Biol Cell. 2013 Jun;24(12):2034-44. doi: 10.1091/mbc.E12-12-0893. Epub 2013 May 1.
10
Centromere-like regions in the budding yeast genome.
PLoS Genet. 2013;9(1):e1003209. doi: 10.1371/journal.pgen.1003209. Epub 2013 Jan 17.

引用本文的文献

1
Misregulation of cell cycle-dependent methylation of budding yeast CENP-A contributes to chromosomal instability.
Mol Biol Cell. 2023 Sep 1;34(10):ar99. doi: 10.1091/mbc.E23-03-0108. Epub 2023 Jul 12.
3
DNA topoisomerase 2-associated proteins PATL1 and PATL2 regulate the biogenesis of hERG K channels.
Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2206146120. doi: 10.1073/pnas.2206146120. Epub 2023 Jan 6.
4
The protective role of MC1R in chromosome stability and centromeric integrity in melanocytes.
Cell Death Discov. 2021 May 18;7(1):111. doi: 10.1038/s41420-021-00499-9.
5
R-loops at centromeric chromatin contribute to defects in kinetochore integrity and chromosomal instability in budding yeast.
Mol Biol Cell. 2021 Jan 1;32(1):74-89. doi: 10.1091/mbc.E20-06-0379. Epub 2020 Nov 4.
7
Cell cycle-dependent association of polo kinase Cdc5 with CENP-A contributes to faithful chromosome segregation in budding yeast.
Mol Biol Cell. 2019 Apr 1;30(8):1020-1036. doi: 10.1091/mbc.E18-09-0584. Epub 2019 Feb 6.
8
Budding yeast CENP-A interacts with the N-terminus of Sgo1 and regulates its association with centromeric chromatin.
Cell Cycle. 2018;17(1):11-23. doi: 10.1080/15384101.2017.1380129. Epub 2018 Jan 2.
9
Polo kinase Cdc5 associates with centromeres to facilitate the removal of centromeric cohesin during mitosis.
Mol Biol Cell. 2016 Jul 15;27(14):2286-300. doi: 10.1091/mbc.E16-01-0004. Epub 2016 May 25.
10
The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing.
RNA Biol. 2016;13(4):455-65. doi: 10.1080/15476286.2016.1154253. Epub 2016 Feb 26.

本文引用的文献

1
Phosphorylation of centromeric histone H3 variant regulates chromosome segregation in Saccharomyces cerevisiae.
Mol Biol Cell. 2013 Jun;24(12):2034-44. doi: 10.1091/mbc.E12-12-0893. Epub 2013 May 1.
2
A novel role of the N terminus of budding yeast histone H3 variant Cse4 in ubiquitin-mediated proteolysis.
Genetics. 2013 Jun;194(2):513-8. doi: 10.1534/genetics.113.149898. Epub 2013 Mar 22.
4
Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events.
Genome Res. 2012 Dec;22(12):2315-27. doi: 10.1101/gr.140988.112. Epub 2012 Oct 2.
5
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
6
Interactions between the kinetochore complex and the protein kinase A pathway in Saccharomyces cerevisiae.
G3 (Bethesda). 2012 Jul;2(7):831-41. doi: 10.1534/g3.112.002675. Epub 2012 Jul 1.
7
Cell-cycle-coupled structural oscillation of centromeric nucleosomes in yeast.
Cell. 2012 Jul 20;150(2):304-16. doi: 10.1016/j.cell.2012.05.034.
8
mRNA BRAF expression helps to identify papillary thyroid carcinomas in thyroid nodules independently of the presence of BRAFV600E mutation.
Pathol Res Pract. 2012 Aug 15;208(8):489-92. doi: 10.1016/j.prp.2012.05.013. Epub 2012 Jul 5.
9
Mitotic spindle form and function.
Genetics. 2012 Apr;190(4):1197-224. doi: 10.1534/genetics.111.128710.
10
Flexibility of centromere and kinetochore structures.
Trends Genet. 2012 May;28(5):204-12. doi: 10.1016/j.tig.2012.02.003. Epub 2012 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验