IEEE Trans Cybern. 2013 Oct;43(5):1495-509. doi: 10.1109/TCYB.2013.2264670. Epub 2013 Jul 24.
A three-phase memetic algorithm (MA) is proposed to find a suboptimal solution for real-time combinatorial stochastic simulation optimization (CSSO) problems with large discrete solution space. In phase 1, a genetic algorithm assisted by an offline global surrogate model is applied to find N good diversified solutions. In phase 2, a probabilistic local search method integrated with an online surrogate model is used to search for the approximate corresponding local optimum of each of the N solutions resulted from phase 1. In phase 3, the optimal computing budget allocation technique is employed to simulate and identify the best solution among the N local optima from phase 2. The proposed MA is applied to an assemble-to-order problem, which is a real-world CSSO problem. Extensive simulations were performed to demonstrate its superior performance, and results showed that the obtained solution is within 1% of the true optimum with a probability of 99%. We also provide a rigorous analysis to evaluate the performance of the proposed MA.
提出了一种三阶段 MEMETIC 算法(MA),用于寻找具有大离散解空间的实时组合随机模拟优化(CSSO)问题的次优解。在第 1 阶段,应用遗传算法和离线全局代理模型来找到 N 个良好的多样化解决方案。在第 2 阶段,使用集成在线代理模型的概率局部搜索方法来搜索第 1 阶段产生的 N 个解决方案中的每个解决方案的近似对应局部最优解。在第 3 阶段,采用最优计算预算分配技术来模拟和识别第 2 阶段的 N 个局部最优解中的最佳解。将所提出的 MA 应用于组装到订单问题,这是一个现实世界的 CSSO 问题。进行了广泛的模拟以证明其优越的性能,结果表明,获得的解决方案在 99%的概率下,与真实最优值的差距在 1%以内。我们还提供了严格的分析来评估所提出的 MA 的性能。