Suppr超能文献

利用连续流动微量离心法自动形成多组分包封囊泡

Automated formation of multicomponent-encapuslating vesosomes using continuous flow microcentrifugation.

作者信息

Jang Huisoo, Hu Peichi C, Jung Sungho, Kim Won Young, Kim Sun Min, Malmstadt Noah, Jeon Tae-Joon

机构信息

Department of Biological Engineering, Inha University, Incheon, Republic of Korea; Biohybrid Systems Research Center, Inha University, Incheon, Republic of Korea.

出版信息

Biotechnol J. 2013 Nov;8(11):1341-6. doi: 10.1002/biot.201200388.

Abstract

Vesosomes - hierarchical assemblies consisting of membrane-bound vesicles of various scales - are potentially powerful models of cellular compartmentalization. Current methods of vesosome fabrication are labor intensive, and offer little control over the size and uniformity of the final product. In this article, we report the development of an automated vesosome formation platform using a microfluidic device and a continuous flow microcentrifuge. In the microfluidic device, water-in-oil droplets containing nanoscale vesicles in the water phase were formed using T-junction geometry, in which a lipid monolayer is formed at the oil/water interface. These water-in-oil droplets were then immediately transferred to the continuous flow microcentrifuge. When a water-in-oil droplet passed through a second lipid monolayer formed in the continuous flow microcentrifuge, a bilayer-encapsulated vesosome was created, which contained all of the contents of the aqueous phase encapsulated within the vesosome. Encapsulation of nanoscale liposomes within the outer vesosome membrane was confirmed by fluorescence microscopy. Laser diffraction analysis showed that the vesosomes we fabricated were uniform (coefficient of variation of 0.029). The yield of the continuous flow microcentrifuge is high, with over 60% of impinging water droplets being converted to vesosomes. Our system provides a fully automatable route for the generation of vesosomes encapsulating arbitrary contents. The method employed in this work is simple and can be readily applied to a variety of systems, providing a facile platform for fabricating multicomponent carriers and model cells.

摘要

囊泡体——由各种尺度的膜结合囊泡组成的分层组装体——可能是细胞区室化的强大模型。目前的囊泡体制备方法劳动强度大,且对最终产品的大小和均匀性控制有限。在本文中,我们报告了一种使用微流控装置和连续流微量离心机的自动化囊泡形成平台的开发。在微流控装置中,利用T型结几何结构形成了水相含有纳米级囊泡的油包水液滴,其中在油/水界面形成了脂质单层。然后将这些油包水液滴立即转移到连续流微量离心机中。当一个油包水液滴通过在连续流微量离心机中形成的第二个脂质单层时,就形成了一个双层包裹的囊泡体,其中包含包裹在囊泡体内的水相的所有内容物。通过荧光显微镜证实了纳米级脂质体被包裹在外囊泡膜内。激光衍射分析表明,我们制备的囊泡体是均匀的(变异系数为0.029)。连续流微量离心机的产率很高,超过60%的撞击水滴被转化为囊泡体。我们的系统为生成包裹任意内容物的囊泡体提供了一条完全自动化的途径。这项工作中采用的方法很简单,并且可以很容易地应用于各种系统,为制造多组分载体和模型细胞提供了一个简便的平台。

相似文献

3
Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line.
J Am Chem Soc. 2011 Mar 9;133(9):2798-800. doi: 10.1021/ja109137s. Epub 2011 Feb 10.
4
Multiple lipid compartments slow vesicle contents release in lipases and serum.
ACS Nano. 2007 Oct;1(3):176-82. doi: 10.1021/nn7002025.
5
Microfluidic fabrication of asymmetric giant lipid vesicles.
ACS Appl Mater Interfaces. 2011 May;3(5):1434-40. doi: 10.1021/am101191d. Epub 2011 Apr 11.
7
Simultaneous generation of multiple aqueous droplets in a microfluidic device.
Anal Chim Acta. 2008 Dec 23;630(2):124-30. doi: 10.1016/j.aca.2008.10.009. Epub 2008 Oct 14.
8
Droplet-interface-bilayer assays in microfluidic passive networks.
Sci Rep. 2015 Apr 24;5:9951. doi: 10.1038/srep09951.
10
Rapid purification of cell encapsulated hydrogel beads from oil phase to aqueous phase in a microfluidic device.
Lab Chip. 2011 Dec 7;11(23):4117-21. doi: 10.1039/c1lc20494g. Epub 2011 Oct 19.

引用本文的文献

2
Directed Signaling Cascades in Monodisperse Artificial Eukaryotic Cells.
ACS Nano. 2021 Oct 26;15(10):15656-15666. doi: 10.1021/acsnano.1c04219. Epub 2021 Sep 27.
3
Toward Experimental Evolution with Giant Vesicles.
Life (Basel). 2018 Oct 31;8(4):53. doi: 10.3390/life8040053.
4
Glucosomes: Glycosylated Vesicle-in-Vesicle Aggregates in Water from pH-Responsive Microbial Glycolipid.
ChemistryOpen. 2017 Jul 12;6(4):526-533. doi: 10.1002/open.201700101. eCollection 2017 Aug.
5
Application of Various Types of Liposomes in Drug Delivery Systems.
Adv Pharm Bull. 2017 Apr;7(1):3-9. doi: 10.15171/apb.2017.002. Epub 2017 Apr 13.

本文引用的文献

1
Synthetic biomimetic membranes and their sensor applications.
Sensors (Basel). 2012;12(7):9530-50. doi: 10.3390/s120709530. Epub 2012 Jul 11.
2
3
Effect of temperature on the formation of liquid phase-separating giant unilamellar vesicles (GUV).
Chem Phys Lipids. 2012 Sep;165(6):630-7. doi: 10.1016/j.chemphyslip.2012.06.006. Epub 2012 Jun 29.
4
Size control of giant unilamellar vesicles prepared from inverted emulsion droplets.
J Colloid Interface Sci. 2012 Jun 15;376(1):119-25. doi: 10.1016/j.jcis.2012.02.029. Epub 2012 Mar 1.
5
Roles of head group architecture and side chain length on colorimetric response of polydiacetylene vesicles to temperature, ethanol and pH.
J Colloid Interface Sci. 2011 Aug 15;360(2):565-73. doi: 10.1016/j.jcis.2011.04.109. Epub 2011 May 9.
6
A membrane filtering method for the purification of giant unilamellar vesicles.
Chem Phys Lipids. 2011 Jul;164(5):351-8. doi: 10.1016/j.chemphyslip.2011.04.003. Epub 2011 Apr 15.
7
Microfluidic fabrication of asymmetric giant lipid vesicles.
ACS Appl Mater Interfaces. 2011 May;3(5):1434-40. doi: 10.1021/am101191d. Epub 2011 Apr 11.
8
Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line.
J Am Chem Soc. 2011 Mar 9;133(9):2798-800. doi: 10.1021/ja109137s. Epub 2011 Feb 10.
9
Giant vesicles: preparations and applications.
Chembiochem. 2010 May 3;11(7):848-65. doi: 10.1002/cbic.201000010.
10
Evolution of specificity in the eukaryotic endomembrane system.
Int J Biochem Cell Biol. 2009 Feb;41(2):330-40. doi: 10.1016/j.biocel.2008.08.041. Epub 2008 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验