Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.
PLoS One. 2013 Jul 22;8(7):e65917. doi: 10.1371/journal.pone.0065917. Print 2013.
Translation of mRNA in axons and dendrites enables a rapid supply of proteins to specific sites of localization within the neuron. Distinct mRNA-containing cargoes, including granules and mitochondrial mRNA, are transported within neuronal projections. The distributions of these cargoes appear to change during neuronal development, but details on the dynamics of mRNA transport during these transitions remain to be elucidated. For this study, we have developed imaging and image processing methods to quantify several transport parameters that can define the dynamics of RNA transport and localization. Using these methods, we characterized the transport of mitochondrial and non-mitochondrial mRNA in differentiated axons and dendrites of cultured hippocampal neurons varying in developmental maturity. Our results suggest differences in the transport profiles of mitochondrial and non-mitochondrial mRNA, and differences in transport parameters at different time points, and between axons and dendrites. Furthermore, within the non-mitochondrial mRNA pool, we observed two distinct populations that differed in their fluorescence intensity and velocity. The net axonal velocity of the brighter pool was highest at day 7 (0.002±0.001 µm/s, mean ± SEM), raising the possibility of a presynaptic requirement for mRNA during early stages of synapse formation. In contrast, the net dendritic velocity of the brighter pool increased steadily as neurons matured, with a significant difference between day 12 (0.0013±0.0006 µm/s ) and day 4 (-0.003±0.001 µm/s) suggesting a postsynaptic role for mRNAs in more mature neurons. The dim population showed similar trends, though velocities were two orders of magnitude higher than of the bright particles. This study provides a baseline for further studies on mRNA transport, and has important implications for the regulation of neuronal plasticity during neuronal development and in response to neuronal injury.
mRNA 在轴突和树突中的翻译使蛋白质能够快速供应到神经元内特定的定位部位。包括颗粒和线粒体 mRNA 在内的不同含有 mRNA 的货物在神经元突起内运输。这些货物的分布在神经元发育过程中似乎会发生变化,但关于这些转变过程中 mRNA 运输的动态的细节仍有待阐明。在这项研究中,我们开发了成像和图像处理方法来定量几个可定义 RNA 运输和定位动力学的传输参数。使用这些方法,我们对培养的海马神经元的分化轴突和树突中的线粒体和非线粒体 mRNA 的运输进行了表征,这些神经元的发育成熟程度不同。我们的结果表明线粒体和非线粒体 mRNA 的运输特征存在差异,在不同时间点和轴突与树突之间的运输参数也存在差异。此外,在非线粒体 mRNA 库中,我们观察到两个不同的群体,它们在荧光强度和速度上存在差异。较亮群体的净轴突速度在第 7 天最高(0.002±0.001 µm/s,平均值 ± SEM),这表明在突触形成的早期阶段,mRNA 可能存在对前突的需求。相比之下,较亮群体的净树突速度随着神经元的成熟而稳步增加,第 12 天(0.0013±0.0006 µm/s)与第 4 天(0.003±0.001 µm/s)之间存在显著差异,这表明成熟神经元中的 mRNA 具有后突作用。暗群体显示出类似的趋势,尽管速度比亮颗粒高两个数量级。这项研究为进一步研究 mRNA 运输提供了基础,并对神经元发育过程中神经元可塑性的调节以及对神经元损伤的反应具有重要意义。