Suppr超能文献

利用额叶血流动力学作为自适应控制器的强化信号。

Use of frontal lobe hemodynamics as reinforcement signals to an adaptive controller.

机构信息

Biomedical Engineering Program, SUNY Downstate Medical Center and NYU Polytechnic, Brooklyn, New York, USA.

出版信息

PLoS One. 2013 Jul 22;8(7):e69541. doi: 10.1371/journal.pone.0069541. Print 2013.

Abstract

Decision-making ability in the frontal lobe (among other brain structures) relies on the assignment of value to states of the animal and its environment. Then higher valued states can be pursued and lower (or negative) valued states avoided. The same principle forms the basis for computational reinforcement learning controllers, which have been fruitfully applied both as models of value estimation in the brain, and as artificial controllers in their own right. This work shows how state desirability signals decoded from frontal lobe hemodynamics, as measured with near-infrared spectroscopy (NIRS), can be applied as reinforcers to an adaptable artificial learning agent in order to guide its acquisition of skills. A set of experiments carried out on an alert macaque demonstrate that both oxy- and deoxyhemoglobin concentrations in the frontal lobe show differences in response to both primarily and secondarily desirable (versus undesirable) stimuli. This difference allows a NIRS signal classifier to serve successfully as a reinforcer for an adaptive controller performing a virtual tool-retrieval task. The agent's adaptability allows its performance to exceed the limits of the NIRS classifier decoding accuracy. We also show that decoding state desirabilities is more accurate when using relative concentrations of both oxyhemoglobin and deoxyhemoglobin, rather than either species alone.

摘要

额叶(以及其他脑结构)中的决策能力依赖于对动物及其环境状态的赋值。然后可以追求更高价值的状态,避免更低(或负)价值的状态。同样的原则构成了计算强化学习控制器的基础,这些控制器已经在大脑中的价值估计模型和自身的人工控制器中得到了成功的应用。这项工作展示了如何将从额叶血液动力学中解码的状态令人期望信号(通过近红外光谱(NIRS)测量)应用于适应性人工学习代理作为强化物,以指导其技能的获取。在一只警觉的猕猴上进行的一组实验表明,额叶中的氧合和去氧血红蛋白浓度都对主要和次要期望(与不期望)刺激有不同的反应。这种差异使得 NIRS 信号分类器能够成功地作为执行虚拟工具检索任务的自适应控制器的强化物。代理的适应性允许其性能超过 NIRS 分类器解码精度的限制。我们还表明,当使用氧合血红蛋白和去氧血红蛋白的相对浓度而不是单独使用任何一种物质时,解码状态令人期望的准确性更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5313/3718814/2541ef993f52/pone.0069541.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验