Suppr超能文献

单试次运动想象任务复杂度分类的研究:一项功能近红外光谱研究。

Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study.

机构信息

Biomedical Optics Research Laboratory (BORL), Division of Neonatology, Department of Obstetrics and Gynecology, University Hospital Zurich, Zurich, Switzerland.

出版信息

J Neuroeng Rehabil. 2011 Jun 18;8:34. doi: 10.1186/1743-0003-8-34.

Abstract

BACKGROUND

For brain computer interfaces (BCIs), which may be valuable in neurorehabilitation, brain signals derived from mental activation can be monitored by non-invasive methods, such as functional near-infrared spectroscopy (fNIRS). Single-trial classification is important for this purpose and this was the aim of the presented study. In particular, we aimed to investigate a combined approach: 1) offline single-trial classification of brain signals derived from a novel wireless fNIRS instrument; 2) to use motor imagery (MI) as mental task thereby discriminating between MI signals in response to different tasks complexities, i.e. simple and complex MI tasks.

METHODS

12 subjects were asked to imagine either a simple finger-tapping task using their right thumb or a complex sequential finger-tapping task using all fingers of their right hand. fNIRS was recorded over secondary motor areas of the contralateral hemisphere. Using Fisher's linear discriminant analysis (FLDA) and cross validation, we selected for each subject a best-performing feature combination consisting of 1) one out of three channel, 2) an analysis time interval ranging from 5-15 s after stimulation onset and 3) up to four Δ[O2Hb] signal features (Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis).

RESULTS

The results of our single-trial classification showed that using the simple combination set of channels, time intervals and up to four Δ[O2Hb] signal features comprising Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis, it was possible to discriminate single-trials of MI tasks differing in complexity, i.e. simple versus complex tasks (inter-task paired t-test p ≤ 0.001), over secondary motor areas with an average classification accuracy of 81%.

CONCLUSIONS

Although the classification accuracies look promising they are nevertheless subject of considerable subject-to-subject variability. In the discussion we address each of these aspects, their limitations for future approaches in single-trial classification and their relevance for neurorehabilitation.

摘要

背景

对于脑机接口(BCI),它可能在神经康复中具有重要价值,可以通过非侵入性方法监测由心理激活产生的脑信号,例如功能近红外光谱(fNIRS)。单次试验分类对于此目的很重要,这是本研究的目的。特别是,我们旨在研究一种组合方法:1)对源自新型无线 fNIRS 仪器的脑信号进行离线单次试验分类;2)使用运动想象(MI)作为心理任务,从而区分不同任务复杂性的 MI 信号,即简单和复杂的 MI 任务。

方法

要求 12 名受试者用右手拇指想象简单的手指敲击任务,或用右手所有手指想象复杂的顺序手指敲击任务。fNIRS 记录在对侧半球的次要运动区域。使用 Fisher 的线性判别分析(FLDA)和交叉验证,我们为每个受试者选择了表现最佳的特征组合,该组合由 1)三个通道中的一个,2)刺激开始后 5-15 秒的分析时间间隔和 3)最多四个 Δ[O2Hb]信号特征(Δ[O2Hb] 平均信号幅度、方差、偏度和峰度)组成。

结果

我们的单次试验分类结果表明,使用简单的通道组合、时间间隔和最多四个 Δ[O2Hb]信号特征(包括 Δ[O2Hb] 平均信号幅度、方差、偏度和峰度),可以区分在复杂性上不同的 MI 任务的单试,即简单任务与复杂任务(任务间配对 t 检验 p ≤ 0.001),在次要运动区域的平均分类准确率为 81%。

结论

尽管分类准确率看起来很有希望,但它们仍然存在相当大的个体间变异性。在讨论中,我们将针对这些方面逐一进行讨论,讨论其对未来单次试验分类方法的限制以及对神经康复的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda6/3133548/c434fe55c80a/1743-0003-8-34-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验