Wu Tim, Hung Alice P-L, Hunter Peter, Mithraratne Kumar
a Auckland Bioengineering Institute, The University of Auckland , Level 6, 70 Symonds Street, Auckland , New Zealand.
Comput Methods Biomech Biomed Engin. 2015;18(5):477-84. doi: 10.1080/10255842.2013.818662. Epub 2013 Jul 29.
This study addresses the issue of modelling material heterogeneity of incompressible bodies. It is seen that when using a mixed (displacement-pressure) finite element formulation, the basis functions used for pressure field may not be able to capture the nonlinearity of material parameters, resulting in pseudo-residual stresses. This problem can be resolved by modifying the constitutive relation using Flory's decomposition of the deformation gradient. A two-parameter Mooney-Rivlin constitutive relation is used to demonstrate the methodology. It is shown that for incompressible materials, the modification does not alter the mechanical behaviour described by the original constitutive model. In fact, the modified constitutive equation shows a better predictability when compared against analytical solutions. Two strategies of describing the material variation (i.e. linear and step change) are explained, and their solutions are evaluated for an ideal two-material interfacing problem. When compared with the standard tied coupling approach, the step change method exhibited a much better agreement because of its ability to capture abrupt changes of the material properties. The modified equation in conjunction with integration point-based material heterogeneity is then used to simulate the deformations of heterogeneous biological structures to illustrate its applications.
本研究探讨了不可压缩物体材料非均匀性建模的问题。可以看出,在使用混合(位移 - 压力)有限元公式时,用于压力场的基函数可能无法捕捉材料参数的非线性,从而导致伪残余应力。通过使用弗洛里(Flory)对变形梯度的分解来修改本构关系,可以解决这个问题。使用双参数穆尼 - 里夫林(Mooney - Rivlin)本构关系来演示该方法。结果表明,对于不可压缩材料,这种修改不会改变原始本构模型所描述的力学行为。实际上,与解析解相比,修改后的本构方程显示出更好的预测能力。解释了描述材料变化的两种策略(即线性和阶跃变化),并针对理想的双材料界面问题评估了它们的解。与标准的绑定耦合方法相比,阶跃变化方法由于能够捕捉材料属性的突然变化而表现出更好的一致性。然后,将修改后的方程与基于积分点的材料非均匀性相结合,用于模拟非均匀生物结构的变形,以说明其应用。