Suppr超能文献

纤维状软生物组织的拟不可压缩和拟不可伸展有限元分析。

A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues.

机构信息

Department of Mechanical Engineering, Middle East Technical University, Dumlupınar Bulvarı 1, 06800, Çankaya, Ankara, Turkey.

出版信息

Biomech Model Mechanobiol. 2020 Dec;19(6):2357-2373. doi: 10.1007/s10237-020-01344-1. Epub 2020 Jun 15.

Abstract

The contribution presents an extension and application of a recently proposed finite element formulation for quasi-inextensible and quasi-incompressible finite hyperelasticity to fibrous soft biological tissues and touches in particular upon computational aspects thereof. In line with theoretical framework presented by Dal (Int J Numer Methods Eng 117:118-140, 2019), the mixed variational formulation is extended to two families of fibers as often encountered while dealing with fibrous tissues. Apart from that, the purely Eulerian setting features the additive decomposition of the free energy function into volumetric, isotropic and anisotropic parts. The multiplicative split of the deformation gradient and all the outcomes thereof, e.g., unimodular invariants, are simply dispensed with in the three element formulations investigated, namely Q1, Q1P0 and the proposed Q1P0F0. For the quasi-incompressible response, the Q1P0 element formulation is briefly outlined where the pressure-type Lagrange multiplier and its conjugate enter the variational formulation as an extended set of variables. Using the similar argumentation, an extended Hu-Washizu-type mixed variational potential is introduced where the volume averaged squares of fiber stretches and associated fiber stresses are additional field variables. The resulting finite element formulation called Q1P0F0 is very attractive as it is based on mean values of the additional field variables at element level through integration over the element domain in a preprocessing step, earning the model vast utilization areas. The proposed approach is examined through representative boundary value problems pertaining to fibrous biological tissues. For all the cases studied, the proposed Q1P0F0 formulation elicits the most compliant mechanical response, thereby outperforming the standard Q1 and Q1P0 element formulations through mesh-refinement analyses. Results prompt further experimental investigations as to true deformation fields under biologically relevant loading conditions which would make the assessment of Q1P0 and Q1P0F0 more based on physical grounds.

摘要

本文提出了一种最近提出的用于拟不可伸展和拟不可压缩有限超弹性的有限元公式的扩展和应用,该公式适用于纤维状软生物组织,并特别涉及到计算方面。与 Dal 提出的理论框架(Int J Numer Methods Eng 117:118-140, 2019)一致,混合变分公式被扩展到两种纤维族,这在处理纤维组织时经常遇到。除此之外,纯粹的欧拉设置具有自由能函数的体积、各向同性和各向异性部分的附加分解。在所研究的三个元素公式中,变形梯度的乘法分解及其所有结果,例如单模不变量,都被简单地摒弃了,这三个元素公式分别是 Q1、Q1P0 和提出的 Q1P0F0。对于拟不可压缩响应,简要概述了 Q1P0 元素公式,其中压力型拉格朗日乘子及其共轭项作为一组扩展变量进入变分公式。基于类似的论证,引入了扩展的 Hu-Washizu 型混合变分势,其中纤维伸长和相关纤维应力的体积平均平方是附加的场变量。由此产生的有限元公式称为 Q1P0F0,非常有吸引力,因为它是基于附加场变量在元素级别上的平均值,通过在预处理步骤中在元素域上积分来获得,从而使模型具有广泛的应用领域。通过涉及纤维状生物组织的代表性边值问题来检验所提出的方法。对于所有研究的情况,所提出的 Q1P0F0 公式都引出了最顺应的力学响应,从而通过网格细化分析优于标准的 Q1 和 Q1P0 元素公式。结果提示进一步进行生物相关加载条件下真实变形场的实验研究,这将使 Q1P0 和 Q1P0F0 的评估更基于物理基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验