Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
Magn Reson Imaging. 2013 Nov;31(9):1587-98. doi: 10.1016/j.mri.2013.06.011. Epub 2013 Jul 27.
The projection-onto-convex-sets (POCS) algorithm is a powerful tool for reconstructing high-resolution images from undersampled k-space data. It is a nonlinear iterative method that attempts to estimate values for missing data. The convergence of the algorithm and its other deterministic properties are well established, but relatively little is known about how noise in the source data influences noise in the final reconstructed image. In this paper, we present an experimental treatment of the statistical properties in POCS and investigate 12 stochastic models for its noise distribution beside its nonlinear point spread functions. Statistical results show that as the ratio of the missing k-space data increases, the noise distribution in POCS images is no longer Rayleigh as with conventional linear Fourier reconstruction. Instead, the probability density function for the noise is well approximated by a lognormal distribution. For small missing data ratios, however, the noise remains Rayleigh distributed. Preliminary results show that in the presence of noise, POCS images are often dominated by POCS-enhanced noise rather than POCS-induced artifacts. Implicit in this work is the presentation of a general statistical method that can be used to assess the noise properties in other nonlinear reconstruction algorithms.
投影到凸集(POCS)算法是一种从欠采样 k 空间数据重建高分辨率图像的强大工具。它是一种尝试估计缺失数据值的非线性迭代方法。该算法的收敛性及其其他确定性特性已经得到很好的证明,但对于源数据中的噪声如何影响最终重建图像中的噪声知之甚少。在本文中,我们对 POCS 的统计特性进行了实验处理,并研究了其噪声分布的 12 个随机模型,以及其非线性点扩散函数。统计结果表明,随着缺失 k 空间数据比例的增加,POCS 图像中的噪声分布不再像传统的线性傅里叶重建那样是瑞利分布。相反,噪声的概率密度函数可以很好地用对数正态分布来近似。然而,对于较小的缺失数据比例,噪声仍然是瑞利分布。初步结果表明,在存在噪声的情况下,POCS 图像通常由 POCS 增强的噪声主导,而不是由 POCS 引起的伪影主导。这项工作隐含着提出了一种通用的统计方法,可以用于评估其他非线性重建算法中的噪声特性。