Suppr超能文献

基于前向模型的词汇预测:德语手语中的 N400 证据。

Lexical prediction via forward models: N400 evidence from German Sign Language.

机构信息

Department of German Philology, Georg-August-University Göttingen, Göttingen, Germany.

出版信息

Neuropsychologia. 2013 Sep;51(11):2224-37. doi: 10.1016/j.neuropsychologia.2013.07.013. Epub 2013 Jul 26.

Abstract

Models of language processing in the human brain often emphasize the prediction of upcoming input-for example in order to explain the rapidity of language understanding. However, the precise mechanisms of prediction are still poorly understood. Forward models, which draw upon the language production system to set up expectations during comprehension, provide a promising approach in this regard. Here, we present an event-related potential (ERP) study on German Sign Language (DGS) which tested the hypotheses of a forward model perspective on prediction. Sign languages involve relatively long transition phases between one sign and the next, which should be anticipated as part of a forward model-based prediction even though they are semantically empty. Native speakers of DGS watched videos of naturally signed DGS sentences which either ended with an expected or a (semantically) unexpected sign. Unexpected signs engendered a biphasic N400-late positivity pattern. Crucially, N400 onset preceded critical sign onset and was thus clearly elicited by properties of the transition phase. The comprehension system thereby clearly anticipated modality-specific information about the realization of the predicted semantic item. These results provide strong converging support for the application of forward models in language comprehension.

摘要

人类大脑语言处理模型通常强调对即将到来的输入进行预测——例如,为了解释语言理解的快速性。然而,预测的精确机制仍知之甚少。前向模型利用语言产生系统在理解过程中建立预期,为这方面提供了一个很有前途的方法。在这里,我们进行了一项德语手语(DGS)事件相关电位(ERP)研究,检验了基于前向模型的预测的假说。手语涉及到一个符号到下一个符号之间相对较长的过渡阶段,即使它们在语义上是空白的,也应该作为基于前向模型的预测的一部分进行预期。DGS 的母语使用者观看了自然手语 DGS 句子的视频,这些句子要么以预期的符号结尾,要么以(语义上)意外的符号结尾。意外的符号引起了双峰 N400-晚期正性波模式。至关重要的是,N400 起始时间早于关键符号起始时间,因此显然是由过渡阶段的特征引发的。理解系统因此清楚地预期了关于预测语义项实现的特定于模态的信息。这些结果为前向模型在语言理解中的应用提供了强有力的支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验