Suppr超能文献

使用拉曼光谱结合先进统计学方法对存在污染物情况下的血液进行法医鉴定:沙子、灰尘和土壤的影响

Forensic identification of blood in the presence of contaminations using Raman microspectroscopy coupled with advanced statistics: effect of sand, dust, and soil.

作者信息

Sikirzhytskaya Aliaksandra, Sikirzhytski Vitali, McLaughlin Gregory, Lednev Igor K

机构信息

Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY, 12222.

出版信息

J Forensic Sci. 2013 Sep;58(5):1141-1148. doi: 10.1111/1556-4029.12248. Epub 2013 Jul 30.

Abstract

Body fluid traces recovered at crime scenes are among the most common and important types of forensic evidence. However, the ability to characterize a biological stain at a crime scene nondestructively has not yet been demonstrated. Here, we expand the Raman spectroscopic approach for the identification of dry traces of pure body fluids to address the problem of heterogeneous contamination, which can impair the performance of conventional methods. The concept of multidimensional Raman signatures was utilized for the identification of blood in dry traces contaminated with sand, dust, and soil. Multiple Raman spectra were acquired from the samples via automatic scanning, and the contribution of blood was evaluated through the fitting quality using spectroscopic signature components. The spatial mapping technique allowed for detection of "hot spots" dominated by blood contribution. The proposed method has great potential for blood identification in highly contaminated samples.

摘要

在犯罪现场发现的体液痕迹是最常见且重要的法医证据类型之一。然而,尚未证明能够在不破坏犯罪现场生物污渍的情况下对其进行特征描述。在此,我们扩展了拉曼光谱方法,用于识别纯净体液的干燥痕迹,以解决可能影响传统方法性能的异质污染问题。利用多维拉曼特征的概念来识别被沙子、灰尘和土壤污染的干燥痕迹中的血液。通过自动扫描从样品中获取多个拉曼光谱,并使用光谱特征成分通过拟合质量评估血液的贡献。空间映射技术能够检测到以血液贡献为主的“热点”。所提出的方法在高度污染样品中的血液识别方面具有巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验