Suppr超能文献

使用工具变量和纵向数据,对具有两个带有误差的预测变量及其交互作用的模型进行回归校准。

Regression calibration for models with two predictor variables measured with error and their interaction, using instrumental variables and longitudinal data.

机构信息

Division of Biostatistics & Bioinformatics, National Jewish Health, Denver, CO, U.S.A.; Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado Denver, Denver, CO, U.S.A.

出版信息

Stat Med. 2014 Feb 10;33(3):470-87. doi: 10.1002/sim.5904. Epub 2013 Jul 30.

Abstract

Regression calibration provides a way to obtain unbiased estimators of fixed effects in regression models when one or more predictors are measured with error. Recent development of measurement error methods has focused on models that include interaction terms between measured-with-error predictors, and separately, methods for estimation in models that account for correlated data. In this work, we derive explicit and novel forms of regression calibration estimators and associated asymptotic variances for longitudinal models that include interaction terms, when data from instrumental and unbiased surrogate variables are available but not the actual predictors of interest. The longitudinal data are fit using linear mixed models that contain random intercepts and account for serial correlation and unequally spaced observations. The motivating application involves a longitudinal study of exposure to two pollutants (predictors) - outdoor fine particulate matter and cigarette smoke - and their association in interactive form with levels of a biomarker of inflammation, leukotriene E4 (LTE 4 , outcome) in asthmatic children. Because the exposure concentrations could not be directly observed, we used measurements from a fixed outdoor monitor and urinary cotinine concentrations as instrumental variables, and we used concentrations of fine ambient particulate matter and cigarette smoke measured with error by personal monitors as unbiased surrogate variables. We applied the derived regression calibration methods to estimate coefficients of the unobserved predictors and their interaction, allowing for direct comparison of toxicity of the different pollutants. We used simulations to verify accuracy of inferential methods based on asymptotic theory.

摘要

回归校准为在一个或多个预测变量存在测量误差的回归模型中获得固定效应的无偏估计量提供了一种方法。最近,测量误差方法的发展集中在包含测量误差预测变量之间交互项的模型上,以及分别针对包含相关数据的模型的估计方法。在这项工作中,我们推导出了包含交互项的纵向模型的回归校准估计量和相关渐近方差的显式和新颖形式,当有仪器和无偏替代变量的数据可用,但没有实际感兴趣的预测变量时。纵向数据使用包含随机截距的线性混合模型进行拟合,以考虑序列相关性和不均匀间隔的观测值。激励应用涉及对两种污染物(预测变量)-室外细颗粒物和香烟烟雾-及其与哮喘儿童炎症生物标志物白三烯 E4(LTE4,结果)的交互形式的暴露的纵向研究。由于暴露浓度不能直接观察到,我们使用固定的室外监测器的测量值和尿可替宁浓度作为工具变量,并且我们使用个人监测器以错误方式测量的细颗粒物质和香烟烟雾浓度作为无偏替代变量。我们应用推导的回归校准方法来估计未观察到的预测变量及其交互作用的系数,允许直接比较不同污染物的毒性。我们使用模拟来验证基于渐近理论的推断方法的准确性。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验