Suppr超能文献

一项使用竞争方法对个人暴露于环境细颗粒物(PM2.5)进行建模的健康效应估计研究。

A study of health effect estimates using competing methods to model personal exposures to ambient PM2.5.

作者信息

Strand Matthew, Hopke Philip K, Zhao Weixiang, Vedal Sverre, Gelfand Erwin, Rabinovitch Nathan

机构信息

Division of Biostatistics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.

出版信息

J Expo Sci Environ Epidemiol. 2007 Sep;17(6):549-58. doi: 10.1038/sj.jes.7500568. Epub 2007 May 16.

Abstract

Various methods have been developed recently to estimate personal exposures to ambient particulate matter less than 2.5 microm in diameter (PM2.5) using fixed outdoor monitors as well as personal exposure monitors. One class of estimators involves extrapolating values using ambient-source components of PM2.5, such as sulfate and iron. A key step in extrapolating these values is to correct for differences in infiltration characteristics of the component used in extrapolation (such as sulfate within PM2.5) and PM2.5. When this is not done, resulting health effect estimates will be biased. Another class of approaches involves factor analysis methods such as positive matrix factorization (PMF). Using either an extrapolation or a factor analysis method in conjunction with regression calibration allows one to estimate the direct effects of ambient PM2.5 on health, eliminating bias caused by using fixed outdoor monitors and estimated personal ambient PM2.5 concentrations. Several forms of the extrapolation method are defined, including some new ones. Health effect estimates that result from the use of these methods are compared with those from an expanded PMF analysis using data collected from a health study of asthmatic children conducted in Denver, Colorado. Examining differences in health effect estimates among the various methods using a measure of lung function (forced expiratory volume in 1 s) as the health indicator demonstrated the importance of the correction factor(s) in the extrapolation methods and that PMF yielded results comparable with the extrapolation methods that incorporated correction factors.

摘要

最近已开发出各种方法,利用固定的室外监测器以及个人暴露监测器来估算个人对直径小于2.5微米的环境颗粒物(PM2.5)的暴露情况。一类估算方法涉及利用PM2.5的环境源成分(如硫酸盐和铁)来外推数值。外推这些数值的关键步骤是校正外推中使用的成分(如PM2.5中的硫酸盐)和PM2.5在渗透特性上的差异。如果不这样做,得出的健康影响估计值将会有偏差。另一类方法涉及因子分析方法,如正定矩阵因子分解法(PMF)。将外推法或因子分析方法与回归校准结合使用,可以估算环境PM2.5对健康的直接影响,消除因使用固定的室外监测器和估算的个人环境PM2.5浓度而导致的偏差。定义了几种外推法形式,包括一些新的形式。将使用这些方法得出的健康影响估计值与使用从科罗拉多州丹佛市进行的一项哮喘儿童健康研究收集的数据进行的扩展PMF分析得出的估计值进行了比较。以肺功能指标(1秒用力呼气量)作为健康指标,检查各种方法之间健康影响估计值的差异,证明了外推法中校正因子的重要性,并且PMF得出的结果与纳入校正因子的外推法相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验