Department of Physics, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705, USA.
J Chem Phys. 2013 Jul 28;139(4):044706. doi: 10.1063/1.4813919.
The diffusion of molecular hydrogen (H2) on a layer of graphene and in the interlayer space between the layers of graphite is studied using molecular dynamics computer simulations. The interatomic interactions were modeled by an Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. Molecular statics calculations of H2 on graphene indicate binding energies ranging from 41 meV to 54 meV and migration barriers ranging from 3 meV to 12 meV. The potential energy surface of an H2 molecule on graphene, with the full relaxations of molecular hydrogen and carbon atoms is calculated. Barriers for the formation of H2 through the Langmuir-Hinshelwood mechanism are calculated. Molecular dynamics calculations of mean square displacements and average surface lifetimes of H2 on graphene at various temperatures indicate a diffusion barrier of 9.8 meV and a desorption barrier of 28.7 meV. Similar calculations for the diffusion of H2 in the interlayer space between the graphite sheets indicate high and low temperature regimes for the diffusion with barriers of 51.2 meV and 11.5 meV. Our results are compared with those of first principles.
采用分子动力学计算机模拟研究了氢气(H2)在石墨烯层上以及石墨层之间的层间空间中的扩散。原子间相互作用通过自适应分子反应经验键序(AIREBO)势能进行建模。H2 在石墨烯上的分子静态计算表明结合能范围为 41 meV 至 54 meV,迁移势垒范围为 3 meV 至 12 meV。计算了具有分子氢和碳原子完全弛豫的 H2 分子在石墨烯上的势能表面。通过 Langmuir-Hinshelwood 机制形成 H2 的势垒进行了计算。在不同温度下 H2 在石墨烯上的均方位移和平均表面寿命的分子动力学计算表明,扩散势垒为 9.8 meV,解吸势垒为 28.7 meV。对于 H2 在石墨片之间的层间空间中的扩散的类似计算表明,扩散具有 51.2 meV 和 11.5 meV 的势垒,存在高温和低温区域。我们的结果与第一性原理的结果进行了比较。