Suppr超能文献

从 SMILES 转化确定化学反应性驱动生物活性:抗 HIV 嘧啶的成键机制。

Determining chemical reactivity driving biological activity from SMILES transformations: the bonding mechanism of anti-HIV pyrimidines.

机构信息

Laboratory of Computational and Structural Physical Chemistry for Nanosciences and QSAR, Biology-Chemistry Department, West University of Timişoara, Pestalozzi Str. No. 16, Timişoara 300115, Romania.

出版信息

Molecules. 2013 Jul 30;18(8):9061-116. doi: 10.3390/molecules18089061.

Abstract

Assessing the molecular mechanism of a chemical-biological interaction and bonding stands as the ultimate goal of any modern quantitative structure-activity relationship (QSAR) study. To this end the present work employs the main chemical reactivity structural descriptors (electronegativity, chemical hardness, chemical power, electrophilicity) to unfold the variational QSAR though their min-max correspondence principles as applied to the Simplified Molecular Input Line Entry System (SMILES) transformation of selected uracil derivatives with anti-HIV potential with the aim of establishing the main stages whereby the given compounds may inhibit HIV infection. The bonding can be completely described by explicitly considering by means of basic indices and chemical reactivity principles two forms of SMILES structures of the pyrimidines, the Longest SMILES Molecular Chain (LoSMoC) and the Branching SMILES (BraS), respectively, as the effective forms involved in the anti-HIV activity mechanism and according to the present work, also necessary intermediates in molecular pathways targeting/docking biological sites of interest.

摘要

评估化学-生物相互作用和键合的分子机制是任何现代定量构效关系 (QSAR) 研究的最终目标。为此,本工作采用主要的化学反应性结构描述符(电负性、化学硬度、化学势、亲电性),通过它们在简化分子输入行系统 (SMILES) 转化中的极大极小对应原理,展开变分 QSAR ,所选嘧啶衍生物具有抗 HIV 潜力,旨在确定给定化合物可能抑制 HIV 感染的主要阶段。通过明确考虑基本指数和化学反应性原理,可以完全描述键合,嘧啶的两种 SMILES 结构形式,即最长 SMILES 分子链 (LoSMoC) 和支化 SMILES (BraS) ,分别作为涉及抗 HIV 活性机制的有效形式,根据本工作,也是靶向/对接感兴趣生物靶点的分子途径中的必要中间体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e548/6270382/f4f73852e749/molecules-18-09061-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验