Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0356, USA.
J Am Chem Soc. 2013 Aug 14;135(32):12013-22. doi: 10.1021/ja405318d. Epub 2013 Aug 1.
Simultaneously strong and reversible through redox chemistry, disulfide bonds play a unique and often irreplaceable role in the formation of biological and synthetic assemblies. In an approach inspired by supramolecular chemistry, we report here that engineered noncovalent interactions on the surface of a monomeric protein can template its assembly into a unique cryptand-like protein complex ((C81/C96)RIDC14) by guiding the selective formation of multiple disulfide bonds across different interfaces. Owing to its highly interconnected framework, (C81/C96)RIDC14 is well preorganized for metal coordination in its interior, can support a large internal cavity surrounding the metal sites, and can withstand significant alterations in inner-sphere metal coordination. (C81/C96)RIDC14 self-assembles with high fidelity and yield in the periplasmic space of E. coli cells, where it can successfully compete for Zn(II) binding.
通过氧化还原化学同时实现强相互作用和可逆性,二硫键在生物和合成组装体的形成中发挥着独特且往往不可替代的作用。受超分子化学启发,我们在此报道,在单体蛋白表面构建的工程化非共价相互作用可以通过引导多个二硫键在不同界面上的选择性形成,将其组装成独特的笼状蛋白复合物((C81/C96)RIDC14)。由于其高度互联的骨架,(C81/C96)RIDC14 非常适合在内部进行金属配位,可以支持围绕金属位点的大内部空腔,并能够承受内部金属配位的重大变化。(C81/C96)RIDC14 可以在大肠杆菌细胞的周质空间中高度保真和高产地自组装,在该空间中,它可以成功竞争 Zn(II) 结合。