Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093-0356, United States.
J Am Chem Soc. 2016 Oct 12;138(40):13163-13166. doi: 10.1021/jacs.6b08458. Epub 2016 Sep 27.
A major goal in metalloprotein design is to build protein scaffolds from scratch that allow precise control over metal coordination. A particular challenge in this regard is the construction of allosteric systems in which metal coordination equilibria are coupled to other chemical events that take place elsewhere in the protein scaffold. We previously developed a metal-templated self-assembly strategy (MeTIR) to build supramolecular protein complexes with tailorable interfaces from monomeric building blocks. Here, using this strategy, we have incorporated multiple disulfide bonds into the interfaces of a Zn-templated cytochrome cb assembly in order to create mechanical strain on the quaternary structural level. Structural and biophysical analyses indicate that this strain leads to an allosteric system in which Zn binding and dissociation are remotely coupled to the formation and breakage of a disulfide bond over a distance of >14 Å. The breakage of this strained bond upon Zn dissociation occurs in the absence of any reductants, apparently through a hydrolytic mechanism that generates a sulfenic acid/thiol pair.
金属蛋白设计的一个主要目标是从头开始构建允许精确控制金属配位的蛋白质支架。在这方面的一个特殊挑战是构建变构系统,其中金属配位平衡与发生在蛋白质支架其他地方的其他化学事件偶联。我们之前开发了一种金属模板自组装策略(MeTIR),该策略可使用可定制的界面从单体构建块构建超分子蛋白质复合物。在这里,我们使用该策略将多个二硫键纳入 Zn 模板细胞色素 cb 组装的界面中,以便在四级结构水平上产生机械应变。结构和生物物理分析表明,这种应变导致变构系统,其中 Zn 结合和解离与在 >14 Å 的距离处形成和断裂二硫键远程偶联。Zn 解离时这种应变键的断裂在没有任何还原剂的情况下发生,显然是通过一种生成亚磺酸/硫醇对的水解机制。