Suppr超能文献

如何利用性别和年龄分类数据以及性别和代际分析来改善人道主义应对。

How sex- and age-disaggregated data and gender and generational analyses can improve humanitarian response.

机构信息

Fletcher School of Law and Diplomacy, and Feinstein International Center, Tufts University, Somerville, MA 02144, United States.

出版信息

Disasters. 2013 Jul;37 Suppl 1:S68-82. doi: 10.1111/disa.12013.

Abstract

Humanitarian aid remains largely driven by anecdote rather than by evidence. The contemporary humanitarian system has significant weaknesses with regard to data collection, analysis, and action at all stages of response to crises involving armed conflict or natural disaster. This paper argues that humanitarian actors can best determine and respond to vulnerabilities and needs if they use sex- and age-disaggregated data (SADD) and gender and generational analyses to help shape their assessments of crises-affected populations. Through case studies, the paper shows how gaps in information on sex and age limit the effectiveness of humanitarian response in all phases of a crisis. The case studies serve to show how proper collection, use, and analysis of SADD enable operational agencies to deliver assistance more effectively and efficiently. The evidence suggests that the employment of SADD and gender and generational analyses assists in saving lives and livelihoods in a crisis.

摘要

人道主义援助在很大程度上仍然依赖于传闻,而不是证据。当代人道主义系统在收集、分析和采取行动方面存在重大弱点,无论是在涉及武装冲突或自然灾害的危机的各个阶段。本文认为,如果人道主义行为体使用按性别和年龄分类的数据(SADD)以及性别和代际分析来帮助塑造他们对受危机影响人群的评估,那么他们就能最好地确定和应对脆弱性和需求。通过案例研究,本文展示了性别和年龄信息的差距如何限制了人道主义应对在危机各个阶段的有效性。这些案例研究表明,妥善收集、使用和分析 SADD 使业务机构能够更有效地提供援助。有证据表明,在危机中使用 SADD 和性别与代际分析有助于拯救生命和生计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验