Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.
Langmuir. 2013 Aug 27;29(34):10841-9. doi: 10.1021/la401985d. Epub 2013 Aug 15.
We identify specific acylphosphatase (AcP) residues that interact with silica nanoparticles (SNPs) using a combined NMR spectroscopy and proteomics-mass spectrometry approach. AcP associated with 4- and 15-nm diameter SNPs through a common and specific interaction surface formed by amino acids from the two α-helices of the protein. Greater retention of native protein structure was obtained on 4-nm SNPs than on 15-nm particles, presumably due to greater surface curvature-induced protein stabilization with the smaller SNPs. These results demonstrate that proteins may undergo specific and size-dependent orientation on nanoparticle surfaces. Our approach can be broadly applied to various protein-material systems to help understand in much greater detail the protein-nanomaterial interface; it would also encourage better modeling, and thus prediction and design, of the behavior of functional proteins adsorbed onto different surfaces.
我们使用核磁共振波谱学和蛋白质组学-质谱联用的方法确定了与二氧化硅纳米颗粒(SNPs)相互作用的特定酰基磷酸酶(AcP)残基。AcP 通过蛋白质的两个α螺旋中的氨基酸形成的共同和特定相互作用表面与 4nm 和 15nm 直径的 SNPs 相关联。与 15nm 颗粒相比,在 4nm SNPs 上保留了更多的天然蛋白质结构,这可能是由于较小的 SNPs 引起的更大的表面曲率诱导的蛋白质稳定性。这些结果表明,蛋白质可能在纳米颗粒表面上经历特定且依赖于尺寸的取向。我们的方法可以广泛应用于各种蛋白质-材料系统,以帮助更详细地了解蛋白质-纳米材料界面;它还将鼓励更好的建模,从而预测和设计吸附在不同表面上的功能蛋白质的行为。