Suppr超能文献

具有食饵庇护所的扩散型捕食-被捕食系统的稳定性和Hopf 分支

Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge.

机构信息

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.

出版信息

Math Biosci Eng. 2013 Aug;10(4):979-96. doi: 10.3934/mbe.2013.10.979.

Abstract

A diffusive predator-prey model with Holling type II functional response and the no-flux boundary condition incorporating a constant prey refuge is considered. Globally asymptotically stability of the positive equilibrium is obtained. Regarding the constant number of prey refuge m as a bifurcation parameter, by analyzing the distribution of the eigenvalues, the existence of Hopf bifurcation is given. Employing the center manifold theory and normal form method, an algorithm for determining the properties of the Hopf bifurcation is derived. Some numerical simulations for illustrating the analysis results are carried out.

摘要

考虑了具有 Holling 型 II 功能反应和无通量边界条件的扩散捕食者-猎物模型,其中包含常数猎物避难所。得到了正平衡点的全局渐近稳定性。将常数猎物避难所 m 作为分岔参数,通过分析特征值的分布,给出了 Hopf 分岔的存在性。利用中心流形理论和规范形方法,推导出了确定 Hopf 分岔性质的算法。进行了一些数值模拟来说明分析结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验