Suppr超能文献

力学在肌动蛋白应力纤维动力学中的作用。

The role of mechanics in actin stress fiber kinetics.

机构信息

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, United States.

出版信息

Exp Cell Res. 2013 Oct 1;319(16):2490-500. doi: 10.1016/j.yexcr.2013.06.017. Epub 2013 Jul 29.

Abstract

The dynamic responses of actin stress fibers within a cell's cytoskeleton are central to the development and maintenance of healthy tissues and organs. Disturbances to these underlie a broad range of pathologies. Because of the importance of these responses, extensive experiments have been conducted in vitro to characterize actin cytoskeleton dynamics of cells cultured upon two-dimensional substrata, and the first experiments have been conducted for cells within three-dimensional tissue models. Three mathematical models exist for predicting the dynamic behaviors observed. Surprisingly, despite differing viewpoints on how actin stress fibers are stabilized or destabilized, all of these models are predictive of a broad range of available experimental data. Coarsely, the models of Kaunas and co-workers adopt a strategy whereby mechanical stretch can hasten the depolymerization actin stress fibers that turn over constantly, while the models of Desphande and co-workers adopt a strategy whereby mechanical stress is required to activate the formation of stress fibers and subsequently stabilize them. In three-dimensional culture, elements of both approaches appear necessary to predict observed phenomena, as embodied by the model of Lee et al. After providing a critical review of existing models, we propose lines of experimentation that might be able to test the different principles underlying their kinetic laws.

摘要

细胞骨架中的肌动蛋白应力纤维的动态响应是健康组织和器官发育和维持的核心。这些动态响应的紊乱是广泛病理学的基础。由于这些响应的重要性,已经进行了广泛的实验,以表征在二维基质上培养的细胞中的肌动蛋白细胞骨架动力学,并且已经针对三维组织模型中的细胞进行了第一次实验。存在三种用于预测观察到的动态行为的数学模型。令人惊讶的是,尽管对于如何稳定或不稳定肌动蛋白应力纤维存在不同的观点,但所有这些模型都可以预测广泛的可用实验数据。粗略地说,Kaunas 及其同事的模型采用一种策略,即机械拉伸可以加速不断进行解聚的肌动蛋白应力纤维,而 Desphande 及其同事的模型采用一种策略,即需要机械应力来激活应力纤维的形成,随后稳定它们。在三维培养中,这两种方法的要素似乎都需要预测观察到的现象,这体现在 Lee 等人的模型中。在对现有模型进行批判性回顾后,我们提出了可能能够测试其动力学定律背后不同原理的实验方案。

相似文献

1
The role of mechanics in actin stress fiber kinetics.力学在肌动蛋白应力纤维动力学中的作用。
Exp Cell Res. 2013 Oct 1;319(16):2490-500. doi: 10.1016/j.yexcr.2013.06.017. Epub 2013 Jul 29.
5
A molecular pathway for myosin II recruitment to stress fibers.肌球蛋白 II 向应激纤维募集的分子途径。
Curr Biol. 2011 Apr 12;21(7):539-50. doi: 10.1016/j.cub.2011.03.007. Epub 2011 Mar 31.

引用本文的文献

3
Regulation of Cell Behavior by Hydrostatic Pressure.流体静压力对细胞行为的调节
Appl Mech Rev. 2019 Jul;71(4):0408031-4080313. doi: 10.1115/1.4043947. Epub 2019 Jul 23.
9
Nanonet Force Microscopy for Measuring Cell Forces.用于测量细胞力的纳米网络力显微镜
Biophys J. 2016 Jul 12;111(1):197-207. doi: 10.1016/j.bpj.2016.05.031.

本文引用的文献

1
Quantification of fibre polymerization through Fourier space image analysis.通过傅里叶空间图像分析对纤维聚合进行定量分析。
Proc Math Phys Eng Sci. 2011 Aug 8;467(2132):2310-2329. doi: 10.1098/rspa.2010.0623. Epub 2011 Mar 9.
2
Microfluidic platforms for mechanobiology.微流控平台在机械生物学中的应用。
Lab Chip. 2013 Jun 21;13(12):2252-67. doi: 10.1039/c3lc41393d. Epub 2013 May 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验