Rev Neurosci. 2013;24(4):431-42. doi: 10.1515/revneuro-2013-0019.
Increasing evidence supports the notion that brain plasticity involves distinct functional and structural components, each entailing a number of cellular mechanisms operating at different time scales, synaptic loci, and developmental phases within an extremely complex framework. However, the exact relationship between functional and structural components of brain plasticity/connectivity phenomena is still unclear and its explanation is a major challenge within modern neuroscience. Transcranial magnetic stimulation (TMS), with or without electroencephalography (EEG), is a sensitive and objective measure of the effect of different kinds of noninvasive manipulation of the brain's activity, particularly of the motor cortex. Moreover, the key feature of TMS and TMS-EEG coregistration is their crucial role in tracking temporal dynamics and inner hierarchies of brain functional and effective connectivities, possibly clarifying some essential issues underlying brain plasticity. All together, the findings presented here are significant for the adoption of the TMS and TMS-EEG coregistration techniques as a tool for basic neurophysiologic research and, in the future, even for clinical diagnostics purposes.
越来越多的证据支持这样一种观点,即大脑的可塑性涉及不同的功能和结构组成部分,每个组成部分都需要许多细胞机制在不同的时间尺度、突触位置和发育阶段在一个极其复杂的框架内运作。然而,大脑可塑性/连通性现象的功能和结构组成部分之间的确切关系尚不清楚,其解释是现代神经科学的主要挑战。经颅磁刺激(TMS)结合或不结合脑电图(EEG)是一种敏感和客观的测量方法,可以测量对大脑活动进行不同类型的非侵入性操作的影响,特别是对运动皮层的影响。此外,TMS 和 TMS-EEG 配准的关键特征在于它们在跟踪大脑功能和有效连通性的时间动态和内在层次结构方面的关键作用,这可能阐明了大脑可塑性的一些基本问题。总之,这里提出的发现对于采用 TMS 和 TMS-EEG 配准技术作为基础神经生理研究的工具具有重要意义,在未来甚至可能用于临床诊断目的。