College of Sciences, China Jiliang University, Hangzhou 310018, P. R. China.
Phys Chem Chem Phys. 2013 Sep 21;15(35):14770-6. doi: 10.1039/c3cp51350e.
The strain effect on the ferroelectric and magnetoelectric coupling in multiferroic tunnel junction (MFTJ) Co/BaTiO3/Co has been investigated systematically by using first-principles calculations within density functional theory. It is found that both in-plane compressive strain and uniaxial tensile strain lead to the enhancement of ferroelectric polarization stability and intensity of magnetoelectric coupling in the MFTJ. There is a transition from the paraelectric phase to the ferroelectric phase for the BaTiO3 layer in MFTJ when the loaded in-plane compressive strain increases up to -2.8% and the corresponding average ferroelectric polarization is about 0.13 C m(-2). Meanwhile, the calculated surface magnetoelectric coefficients increase with increasing in-plane compressive strain. Similar phenomena have been also observed in the case of uniaxial tensile strain implemented in MFTJ. The results suggest that the ferroelectric polarization and magnetoelectric coupling in multiferroic tunnel junctions can be controlled by strain and we expect that this study can provide a theoretical basis for the design of spintronic devices.
我们通过第一性原理计算在密度泛函理论框架下系统地研究了多铁隧道结(MFTJ)Co/BaTiO3/Co 中应变对铁电和磁电耦合的影响。结果表明,无论是平面内压缩应变还是单轴拉伸应变都会导致 MFTJ 中铁电极化稳定性和磁电耦合强度的增强。当施加的平面内压缩应变为-2.8%时,MFTJ 中的 BaTiO3 层会从顺电相转变为铁电相,对应的平均铁电极化约为 0.13 C m(-2)。同时,计算得到的表面磁电系数随平面内压缩应变的增加而增加。在 MFTJ 中施加单轴拉伸应变时也观察到了类似的现象。这些结果表明,多铁隧道结中的铁电极化和磁电耦合可以通过应变来控制,我们期望这项研究可以为自旋电子器件的设计提供理论依据。