Zhang Kai, Wang Xiaocha, Mi Wenbo
Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
Phys Chem Chem Phys. 2023 Jul 26;25(29):19773-19787. doi: 10.1039/d3cp02466k.
Multiferroic van der Waals (vdW) heterojunctions have a strong and nonvolatile magnetoelectric coupling effect, which is of great significance in spintronic devices. The electronic structure and magnetic properties of a GdClBr/CuBiPSe vdW multiferroic heterojunction have been calculated using first-principles methods. Due to the spin-up charge transfer and Zeeman field, the ferroelectric CuBiPSe exhibits spin splitting at the gamma point. It is found that the electronic structure and magnetic properties of the GdClBr/CuBiPSe vdW multiferroic heterojunction have been significantly modulated by the electric polarization of CuBiPSe. During the reversal of the ferroelectric polarization of CuBiPSe, the ferromagnetic GdClBr monolayer transforms from a semiconductor to a half-metal. Meanwhile, in both upward and downward ferroelectric polarization, the GdClBr/CuBiPSe heterojunction exhibits perpendicular magnetic anisotropy with a Curie temperature of 239 K. As the strain changes from -6% to 6%, the band structure of GdClBr shifts upward, and the band structure of CuBiPSe shifts downward. Compressive strain can increase the Curie temperature of the GdClBr/CuBiPSe heterojunction. The magnetic anisotropy of heterojunctions highly depends on biaxial strain, where the perpendicular (in-plane) magnetic anisotropy increases with the increased compressive (tensile) strain. The vdW multiferroic GdClBr/CuBiPSe heterojunction has potential applications in spintronic devices.
多铁性范德华(vdW)异质结具有强大且非易失性的磁电耦合效应,这在自旋电子器件中具有重要意义。已使用第一性原理方法计算了GdClBr/CuBiPSe范德华多铁性异质结的电子结构和磁性。由于自旋向上的电荷转移和塞曼场,铁电体CuBiPSe在Γ点表现出自旋分裂。研究发现,CuBiPSe的电极化显著调制了GdClBr/CuBiPSe范德华多铁性异质结的电子结构和磁性。在CuBiPSe铁电极化反转过程中,铁磁体GdClBr单层从半导体转变为半金属。同时,在铁电极化向上和向下时,GdClBr/CuBiPSe异质结均表现出垂直磁各向异性,居里温度为239 K。当应变从 -6% 变化到6% 时,GdClBr的能带结构向上移动,CuBiPSe的能带结构向下移动。压缩应变可提高GdClBr/CuBiPSe异质结的居里温度。异质结的磁各向异性高度依赖于双轴应变,其中垂直(面内)磁各向异性随压缩(拉伸)应变的增加而增加。范德华多铁性GdClBr/CuBiPSe异质结在自旋电子器件中具有潜在应用。