Suppr超能文献

一个用于自然场景中物体识别的大规模脑磁图和脑电图数据集。

A large-scale MEG and EEG dataset for object recognition in naturalistic scenes.

作者信息

Zhang Guohao, Zhou Ming, Zhen Shuyi, Tang Shaohua, Li Zheng, Zhen Zonglei

机构信息

Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.

出版信息

Sci Data. 2025 May 23;12(1):857. doi: 10.1038/s41597-025-05174-7.

Abstract

Neuroimaging with large-scale naturalistic stimuli is increasingly employed to elucidate neural mechanisms of object recognition in natural scenes. However, most existing large-scale neuroimaging datasets with naturalistic stimuli primarily rely on functional magnetic resonance imaging (fMRI), which provides high spatial resolution but is limited in capturing the temporal dynamics. To address this limitation, we extended our Natural Object Dataset-fMRI (NOD-fMRI) by collecting both magnetoencephalography (MEG) and electroencephalography (EEG) data from the same participants while viewing the same naturalistic stimuli. As a result, NOD contains fMRI, MEG, and EEG responses to 57,000 naturalistic images from 30 participants. This enables the examination of brain activity elicited by naturalistic stimuli with both high spatial resolution (via fMRI) and high temporal resolution (via MEG and EEG). Furthermore, the multimodal nature of NOD allows researchers to combine datasets from different modalities to achieve a more comprehensive view of object processing. We believe that the NOD dataset will serve as a valuable resource for advancing our understanding of the cognitive and neural mechanisms underlying object recognition.

摘要

使用大规模自然主义刺激的神经成像越来越多地被用于阐明自然场景中物体识别的神经机制。然而,大多数现有的带有自然主义刺激的大规模神经成像数据集主要依赖功能磁共振成像(fMRI),它提供了高空间分辨率,但在捕捉时间动态方面存在局限性。为了解决这一局限性,我们扩展了我们的自然物体数据集 - fMRI(NOD - fMRI),通过在同一参与者观看相同自然主义刺激时收集脑磁图(MEG)和脑电图(EEG)数据。结果,NOD包含了来自30名参与者对57000张自然主义图像的fMRI、MEG和EEG反应。这使得能够通过高空间分辨率(通过fMRI)和高时间分辨率(通过MEG和EEG)来检查由自然主义刺激引发的大脑活动。此外,NOD的多模态性质允许研究人员组合来自不同模态的数据集,以获得对物体处理更全面的看法。我们相信,NOD数据集将成为推进我们对物体识别背后的认知和神经机制理解的宝贵资源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验