Suppr超能文献

电生理任务数据的动态网络分析

Dynamic network analysis of electrophysiological task data.

作者信息

Gohil Chetan, Kohl Oliver, Huang Rukuang, van Es Mats W J, Parker Jones Oiwi, Hunt Laurence T, Quinn Andrew J, Woolrich Mark W

机构信息

Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom.

Department of Engineering Science, University of Oxford, Oxford, United Kingdom.

出版信息

Imaging Neurosci (Camb). 2024 Jul 15;2. doi: 10.1162/imag_a_00226. eCollection 2024.

Abstract

An important approach for studying the human brain is to use functional neuroimaging combined with a task. In electrophysiological data, this often involves a time-frequency analysis, in which recorded brain activity is time-frequency transformed and epoched around task events of interest, followed by trial-averaging of the power. While this simple approach can reveal fast oscillatory dynamics, the brain regions are analysed one at a time. This causes difficulties for interpretation and a debilitating number of multiple comparisons. In addition, it is now recognised that the brain responds to tasks through the coordinated activity of networks of brain areas. As such, techniques that take a whole-brain network perspective are needed. Here, we show how the oscillatory task responses from conventional time-frequency approaches can be represented more parsimoniously at the network level using two state-of-the-art methods: the HMM (Hidden Markov Model) and DyNeMo (Dynamic Network Modes). Both methods reveal frequency-resolved networks of oscillatory activity with millisecond resolution. Comparing DyNeMo, HMM, and traditional oscillatory response analysis, we show DyNeMo can identify task activations/deactivations that the other approaches fail to detect. DyNeMo offers a powerful new method for analysing task data from the perspective of dynamic brain networks.

摘要

研究人类大脑的一种重要方法是将功能神经成像与一项任务相结合。在电生理数据中,这通常涉及时频分析,即对记录的大脑活动进行时频变换,并围绕感兴趣的任务事件进行分段,然后对功率进行试次平均。虽然这种简单方法可以揭示快速振荡动力学,但每次只分析一个脑区。这给解释带来了困难,并且会产生大量令人困扰的多重比较。此外,现在人们认识到大脑通过脑区网络的协同活动对任务做出反应。因此,需要采用全脑网络视角的技术。在这里,我们展示了如何使用两种先进方法:隐马尔可夫模型(HMM)和动态网络模式(DyNeMo),在网络层面更简洁地表示传统时频方法的振荡任务响应。这两种方法都能以毫秒分辨率揭示频率分辨的振荡活动网络。通过比较DyNeMo、HMM和传统振荡响应分析,我们表明DyNeMo能够识别其他方法未能检测到的任务激活/去激活情况。DyNeMo为从动态脑网络角度分析任务数据提供了一种强大的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9662/12272243/9099aa25a64f/imag_a_00226_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验